malloc & sysmalloc

Reading time: 35 minutes

tip

Jifunze na fanya mazoezi ya AWS Hacking:HackTricks Training AWS Red Team Expert (ARTE)
Jifunze na fanya mazoezi ya GCP Hacking: HackTricks Training GCP Red Team Expert (GRTE)

Support HackTricks

Muhtasari wa Agizo la Usambazaji

(Hakuna ukaguzi ulioelezwa katika muhtasari huu na baadhi ya kesi zimeachwa kwa ufupi)

  1. __libc_malloc inajaribu kupata kipande kutoka tcache, ikiwa sio inaita _int_malloc
  2. _int_malloc :
  3. Inajaribu kuunda arena ikiwa hakuna
  4. Ikiwa kuna kipande cha haraka cha ukubwa sahihi, kitumie
  5. Jaza tcache na vipande vingine vya haraka
  6. Ikiwa kuna kipande kidogo cha ukubwa sahihi, kitumie
  7. Jaza tcache na vipande vingine vya ukubwa huo
  8. Ikiwa ukubwa uliotakiwa sio wa bins ndogo, ungana bins za haraka katika bin isiyo na mpangilio
  9. Angalia bin isiyo na mpangilio, tumia kipande cha kwanza chenye nafasi ya kutosha
  10. Ikiwa kipande kilichopatikana ni kikubwa, gawanya ili kurudisha sehemu na ongeza kumbukumbu nyuma kwenye bin isiyo na mpangilio
  11. Ikiwa kipande kina ukubwa sawa na ukubwa uliotakiwa, tumia ili kujaza tcache badala ya kurudisha (hadi tcache ijazwe, kisha rudisha kipande kinachofuata)
  12. Kwa kila kipande cha ukubwa mdogo kilichokaguliwa, weka katika bin yake ndogo au kubwa
  13. Angalia bin kubwa katika orodha ya ukubwa uliotakiwa
  14. Anza kutafuta kutoka kwa kipande cha kwanza ambacho ni kikubwa kuliko ukubwa uliotakiwa, ikiwa chochote kinapatikana rudisha na ongeza kumbukumbu kwenye bin ndogo
  15. Angalia bins kubwa kutoka kwa viashiria vifuatavyo hadi mwisho
  16. Kutoka kwa kiashiria kikubwa kinachofuata angalia kwa kipande chochote, gawanya kipande cha kwanza kilichopatikana ili kukitumia kwa ukubwa uliotakiwa na ongeza kumbukumbu kwenye bin isiyo na mpangilio
  17. Ikiwa hakuna kitu kinachopatikana katika bins zilizopita, pata kipande kutoka kwa kipande cha juu
  18. Ikiwa kipande cha juu hakikuwa kikubwa vya kutosha, panua kwa sysmalloc

__libc_malloc

Kazi ya malloc kwa kweli inaita __libc_malloc. Kazi hii itakagua tcache kuona ikiwa kuna kipande chochote kinachopatikana cha ukubwa unaotakiwa. Ikiwa kiko, kitatumika na ikiwa hakipo itakagua ikiwa ni nyuzi moja na katika kesi hiyo itaita _int_malloc katika arena kuu, na ikiwa sio itaita _int_malloc katika arena ya nyuzi.

__libc_malloc code
c
// From https://github.com/bminor/glibc/blob/master/malloc/malloc.c

#if IS_IN (libc)
void *
__libc_malloc (size_t bytes)
{
mstate ar_ptr;
void *victim;

_Static_assert (PTRDIFF_MAX <= SIZE_MAX / 2,
"PTRDIFF_MAX is not more than half of SIZE_MAX");

if (!__malloc_initialized)
ptmalloc_init ();
#if USE_TCACHE
/* int_free also calls request2size, be careful to not pad twice.  */
size_t tbytes = checked_request2size (bytes);
if (tbytes == 0)
{
__set_errno (ENOMEM);
return NULL;
}
size_t tc_idx = csize2tidx (tbytes);

MAYBE_INIT_TCACHE ();

DIAG_PUSH_NEEDS_COMMENT;
if (tc_idx < mp_.tcache_bins
&& tcache != NULL
&& tcache->counts[tc_idx] > 0)
{
victim = tcache_get (tc_idx);
return tag_new_usable (victim);
}
DIAG_POP_NEEDS_COMMENT;
#endif

if (SINGLE_THREAD_P)
{
victim = tag_new_usable (_int_malloc (&main_arena, bytes));
assert (!victim || chunk_is_mmapped (mem2chunk (victim)) ||
&main_arena == arena_for_chunk (mem2chunk (victim)));
return victim;
}

arena_get (ar_ptr, bytes);

victim = _int_malloc (ar_ptr, bytes);
/* Retry with another arena only if we were able to find a usable arena
before.  */
if (!victim && ar_ptr != NULL)
{
LIBC_PROBE (memory_malloc_retry, 1, bytes);
ar_ptr = arena_get_retry (ar_ptr, bytes);
victim = _int_malloc (ar_ptr, bytes);
}

if (ar_ptr != NULL)
__libc_lock_unlock (ar_ptr->mutex);

victim = tag_new_usable (victim);

assert (!victim || chunk_is_mmapped (mem2chunk (victim)) ||
ar_ptr == arena_for_chunk (mem2chunk (victim)));
return victim;
}

Kumbuka jinsi itakavyokuwa kila wakati ikitaga pointer iliyopewa tag_new_usable, kutoka kwa msimbo:

c
void *tag_new_usable (void *ptr)

Allocate a new random color and use it to color the user region of
a chunk; this may include data from the subsequent chunk's header
if tagging is sufficiently fine grained.  Returns PTR suitably
recolored for accessing the memory there.

_int_malloc

Hii ni kazi inayopanga kumbukumbu kwa kutumia bins nyingine na top chunk.

  • Anza

Inaanza kwa kufafanua baadhi ya vars na kupata ukubwa halisi wa nafasi ya kumbukumbu inayohitajika:

_int_malloc anza
c
// From https://github.com/bminor/glibc/blob/f942a732d37a96217ef828116ebe64a644db18d7/malloc/malloc.c#L3847
static void *
_int_malloc (mstate av, size_t bytes)
{
INTERNAL_SIZE_T nb;               /* normalized request size */
unsigned int idx;                 /* associated bin index */
mbinptr bin;                      /* associated bin */

mchunkptr victim;                 /* inspected/selected chunk */
INTERNAL_SIZE_T size;             /* its size */
int victim_index;                 /* its bin index */

mchunkptr remainder;              /* remainder from a split */
unsigned long remainder_size;     /* its size */

unsigned int block;               /* bit map traverser */
unsigned int bit;                 /* bit map traverser */
unsigned int map;                 /* current word of binmap */

mchunkptr fwd;                    /* misc temp for linking */
mchunkptr bck;                    /* misc temp for linking */

#if USE_TCACHE
size_t tcache_unsorted_count;	    /* count of unsorted chunks processed */
#endif

/*
Convert request size to internal form by adding SIZE_SZ bytes
overhead plus possibly more to obtain necessary alignment and/or
to obtain a size of at least MINSIZE, the smallest allocatable
size. Also, checked_request2size returns false for request sizes
that are so large that they wrap around zero when padded and
aligned.
*/

nb = checked_request2size (bytes);
if (nb == 0)
{
__set_errno (ENOMEM);
return NULL;
}

Arena

Katika tukio lisilo la kawaida ambapo hakuna maeneo yanayoweza kutumika, inatumia sysmalloc kupata kipande kutoka mmap:

_int_malloc si eneo
c
// From https://github.com/bminor/glibc/blob/f942a732d37a96217ef828116ebe64a644db18d7/malloc/malloc.c#L3885C3-L3893C6
/* There are no usable arenas.  Fall back to sysmalloc to get a chunk from
mmap.  */
if (__glibc_unlikely (av == NULL))
{
void *p = sysmalloc (nb, av);
if (p != NULL)
alloc_perturb (p, bytes);
return p;
}

Fast Bin

Ikiwa saizi inayohitajika iko ndani ya saizi za Fast Bins, jaribu kutumia kipande kutoka kwa fast bin. Kimsingi, kulingana na saizi, itapata index ya fast bin ambapo vipande halali vinapaswa kuwa, na ikiwa vipo, itarudisha kimoja kati yao.
Zaidi ya hayo, ikiwa tcache imewezeshwa, itajaza tcache bin ya saizi hiyo kwa fast bins.

Wakati wa kutekeleza vitendo hivi, baadhi ya ukaguzi wa usalama unatekelezwa hapa:

  • Ikiwa kipande hakiko sawa: malloc(): unaligned fastbin chunk detected 2
  • Ikiwa kipande cha mbele hakiko sawa: malloc(): unaligned fastbin chunk detected
  • Ikiwa kipande kilichorejeshwa kina saizi ambayo si sahihi kwa sababu ya index yake katika fast bin: malloc(): memory corruption (fast)
  • Ikiwa kipande chochote kilichotumika kujaza tcache hakiko sawa: malloc(): unaligned fastbin chunk detected 3
_int_malloc fast bin
c
// From https://github.com/bminor/glibc/blob/f942a732d37a96217ef828116ebe64a644db18d7/malloc/malloc.c#L3895C3-L3967C6
/*
If the size qualifies as a fastbin, first check corresponding bin.
This code is safe to execute even if av is not yet initialized, so we
can try it without checking, which saves some time on this fast path.
*/

#define REMOVE_FB(fb, victim, pp)			\
do							\
{							\
victim = pp;					\
if (victim == NULL)				\
break;						\
pp = REVEAL_PTR (victim->fd);                                     \
if (__glibc_unlikely (pp != NULL && misaligned_chunk (pp)))       \
malloc_printerr ("malloc(): unaligned fastbin chunk detected"); \
}							\
while ((pp = catomic_compare_and_exchange_val_acq (fb, pp, victim)) \
!= victim);					\

if ((unsigned long) (nb) <= (unsigned long) (get_max_fast ()))
{
idx = fastbin_index (nb);
mfastbinptr *fb = &fastbin (av, idx);
mchunkptr pp;
victim = *fb;

if (victim != NULL)
{
if (__glibc_unlikely (misaligned_chunk (victim)))
malloc_printerr ("malloc(): unaligned fastbin chunk detected 2");

if (SINGLE_THREAD_P)
*fb = REVEAL_PTR (victim->fd);
else
REMOVE_FB (fb, pp, victim);
if (__glibc_likely (victim != NULL))
{
size_t victim_idx = fastbin_index (chunksize (victim));
if (__builtin_expect (victim_idx != idx, 0))
malloc_printerr ("malloc(): memory corruption (fast)");
check_remalloced_chunk (av, victim, nb);
#if USE_TCACHE
/* While we're here, if we see other chunks of the same size,
stash them in the tcache.  */
size_t tc_idx = csize2tidx (nb);
if (tcache != NULL && tc_idx < mp_.tcache_bins)
{
mchunkptr tc_victim;

/* While bin not empty and tcache not full, copy chunks.  */
while (tcache->counts[tc_idx] < mp_.tcache_count
&& (tc_victim = *fb) != NULL)
{
if (__glibc_unlikely (misaligned_chunk (tc_victim)))
malloc_printerr ("malloc(): unaligned fastbin chunk detected 3");
if (SINGLE_THREAD_P)
*fb = REVEAL_PTR (tc_victim->fd);
else
{
REMOVE_FB (fb, pp, tc_victim);
if (__glibc_unlikely (tc_victim == NULL))
break;
}
tcache_put (tc_victim, tc_idx);
}
}
#endif
void *p = chunk2mem (victim);
alloc_perturb (p, bytes);
return p;
}
}
}

Small Bin

Kama ilivyoonyeshwa katika maoni, small bins zinaweka saizi moja kwa kila index, hivyo kuangalia kama chunk halali inapatikana ni haraka sana, hivyo baada ya fast bins, small bins zinaangaliwa.

Kipimo cha kwanza ni kugundua kama saizi iliyohitajika inaweza kuwa ndani ya small bin. Katika kesi hiyo, pata index inayohusiana ndani ya smallbin na uone kama kuna chunk yoyote inayopatikana.

Kisha, ukaguzi wa usalama unafanywa kuangalia:

  • kama victim->bk->fd = victim. Ili kuona kwamba chunks zote mbili zimeunganishwa vizuri.

Katika kesi hiyo, chunk inapata inuse bit, orodha ya mara mbili imewekwa sawa hivyo chunk hii inatoweka kutoka kwake (kama inatumika), na bit ya non main arena inawekwa ikiwa inahitajika.

Hatimaye, jaza tcache index ya saizi iliyohitajika na chunks nyingine ndani ya small bin (ikiwa zipo).

_int_malloc small bin
c
// From https://github.com/bminor/glibc/blob/f942a732d37a96217ef828116ebe64a644db18d7/malloc/malloc.c#L3895C3-L3967C6

/*
If a small request, check regular bin.  Since these "smallbins"
hold one size each, no searching within bins is necessary.
(For a large request, we need to wait until unsorted chunks are
processed to find best fit. But for small ones, fits are exact
anyway, so we can check now, which is faster.)
*/

if (in_smallbin_range (nb))
{
idx = smallbin_index (nb);
bin = bin_at (av, idx);

if ((victim = last (bin)) != bin)
{
bck = victim->bk;
if (__glibc_unlikely (bck->fd != victim))
malloc_printerr ("malloc(): smallbin double linked list corrupted");
set_inuse_bit_at_offset (victim, nb);
bin->bk = bck;
bck->fd = bin;

if (av != &main_arena)
set_non_main_arena (victim);
check_malloced_chunk (av, victim, nb);
#if USE_TCACHE
/* While we're here, if we see other chunks of the same size,
stash them in the tcache.  */
size_t tc_idx = csize2tidx (nb);
if (tcache != NULL && tc_idx < mp_.tcache_bins)
{
mchunkptr tc_victim;

/* While bin not empty and tcache not full, copy chunks over.  */
while (tcache->counts[tc_idx] < mp_.tcache_count
&& (tc_victim = last (bin)) != bin)
{
if (tc_victim != 0)
{
bck = tc_victim->bk;
set_inuse_bit_at_offset (tc_victim, nb);
if (av != &main_arena)
set_non_main_arena (tc_victim);
bin->bk = bck;
bck->fd = bin;

tcache_put (tc_victim, tc_idx);
}
}
}
#endif
void *p = chunk2mem (victim);
alloc_perturb (p, bytes);
return p;
}
}

malloc_consolidate

Ikiwa haikuwa kipande kidogo, ni kipande kikubwa, na katika kesi hii malloc_consolidate inaitwa ili kuepuka upasuwaji wa kumbukumbu.

malloc_consolidate call
c
/*
If this is a large request, consolidate fastbins before continuing.
While it might look excessive to kill all fastbins before
even seeing if there is space available, this avoids
fragmentation problems normally associated with fastbins.
Also, in practice, programs tend to have runs of either small or
large requests, but less often mixtures, so consolidation is not
invoked all that often in most programs. And the programs that
it is called frequently in otherwise tend to fragment.
*/

else
{
idx = largebin_index (nb);
if (atomic_load_relaxed (&av->have_fastchunks))
malloc_consolidate (av);
}

Kazi ya malloc consolidate kimsingi inatoa vipande kutoka kwa fast bin na kuviweka kwenye unsorted bin. Baada ya malloc inayofuata, vipande hivi vitapangwa katika bins zao ndogo/haraka.

Kumbuka kwamba ikiwa wakati wa kuondoa vipande hivi, vinapopatika na vipande vya awali au vya baadaye ambavyo havitumiki, vitakuwa vimeunganishwa na kuunganishwa kabla ya kuweka kipande cha mwisho kwenye unsorted bin.

Kwa kila kipande cha fast bin, ukaguzi kadhaa wa usalama unafanywa:

  • Ikiwa kipande hakijapangwa vizuri trigger: malloc_consolidate(): unaligned fastbin chunk detected
  • Ikiwa kipande kina ukubwa tofauti na ule ambao unapaswa kwa sababu ya index iliyo ndani yake: malloc_consolidate(): invalid chunk size
  • Ikiwa kipande cha awali hakitumiki na kipande cha awali kina ukubwa tofauti na ule ulioonyeshwa na prev_chunk: corrupted size vs. prev_size in fastbins
malloc_consolidate function
c
// https://github.com/bminor/glibc/blob/f942a732d37a96217ef828116ebe64a644db18d7/malloc/malloc.c#L4810C1-L4905C2

static void malloc_consolidate(mstate av)
{
mfastbinptr*    fb;                 /* current fastbin being consolidated */
mfastbinptr*    maxfb;              /* last fastbin (for loop control) */
mchunkptr       p;                  /* current chunk being consolidated */
mchunkptr       nextp;              /* next chunk to consolidate */
mchunkptr       unsorted_bin;       /* bin header */
mchunkptr       first_unsorted;     /* chunk to link to */

/* These have same use as in free() */
mchunkptr       nextchunk;
INTERNAL_SIZE_T size;
INTERNAL_SIZE_T nextsize;
INTERNAL_SIZE_T prevsize;
int             nextinuse;

atomic_store_relaxed (&av->have_fastchunks, false);

unsorted_bin = unsorted_chunks(av);

/*
Remove each chunk from fast bin and consolidate it, placing it
then in unsorted bin. Among other reasons for doing this,
placing in unsorted bin avoids needing to calculate actual bins
until malloc is sure that chunks aren't immediately going to be
reused anyway.
*/

maxfb = &fastbin (av, NFASTBINS - 1);
fb = &fastbin (av, 0);
do {
p = atomic_exchange_acquire (fb, NULL);
if (p != 0) {
do {
{
if (__glibc_unlikely (misaligned_chunk (p)))
malloc_printerr ("malloc_consolidate(): "
"unaligned fastbin chunk detected");

unsigned int idx = fastbin_index (chunksize (p));
if ((&fastbin (av, idx)) != fb)
malloc_printerr ("malloc_consolidate(): invalid chunk size");
}

check_inuse_chunk(av, p);
nextp = REVEAL_PTR (p->fd);

/* Slightly streamlined version of consolidation code in free() */
size = chunksize (p);
nextchunk = chunk_at_offset(p, size);
nextsize = chunksize(nextchunk);

if (!prev_inuse(p)) {
prevsize = prev_size (p);
size += prevsize;
p = chunk_at_offset(p, -((long) prevsize));
if (__glibc_unlikely (chunksize(p) != prevsize))
malloc_printerr ("corrupted size vs. prev_size in fastbins");
unlink_chunk (av, p);
}

if (nextchunk != av->top) {
nextinuse = inuse_bit_at_offset(nextchunk, nextsize);

if (!nextinuse) {
size += nextsize;
unlink_chunk (av, nextchunk);
} else
clear_inuse_bit_at_offset(nextchunk, 0);

first_unsorted = unsorted_bin->fd;
unsorted_bin->fd = p;
first_unsorted->bk = p;

if (!in_smallbin_range (size)) {
p->fd_nextsize = NULL;
p->bk_nextsize = NULL;
}

set_head(p, size | PREV_INUSE);
p->bk = unsorted_bin;
p->fd = first_unsorted;
set_foot(p, size);
}

else {
size += nextsize;
set_head(p, size | PREV_INUSE);
av->top = p;
}

} while ( (p = nextp) != 0);

}
} while (fb++ != maxfb);
}

Bin isiyo na mpangilio

Ni wakati wa kuangalia bin isiyo na mpangilio kwa kipande kinachoweza kutumika.

Anza

Hii inaanza na mzunguko mkubwa wa for ambao utaenda kupitia bin isiyo na mpangilio katika mwelekeo wa bk hadi ifike mwisho (muundo wa arena) kwa while ((victim = unsorted_chunks (av)->bk) != unsorted_chunks (av))

Zaidi ya hayo, ukaguzi wa usalama unafanywa kila wakati kipande kipya kinapozingatiwa:

  • Ikiwa saizi ya kipande ni ya ajabu (ndogo sana au kubwa sana): malloc(): invalid size (unsorted)
  • Ikiwa saizi ya kipande kinachofuata ni ya ajabu (ndogo sana au kubwa sana): malloc(): invalid next size (unsorted)
  • Ikiwa saizi ya awali iliyoonyeshwa na kipande kinachofuata inatofautiana na saizi ya kipande: malloc(): mismatching next->prev_size (unsorted)
  • Ikiwa si victim->bck->fd == victim au si victim->fd == av (arena): malloc(): unsorted double linked list corrupted
  • Kwa kuwa kila wakati tunakagua ile ya mwisho, fd yake inapaswa kuelekeza kila wakati kwenye muundo wa arena.
  • Ikiwa kipande kinachofuata hakionyeshi kuwa cha awali kinatumika: malloc(): invalid next->prev_inuse (unsorted)
_int_malloc kuanza kwa bin isiyo na mpangilio
c
/*
Process recently freed or remaindered chunks, taking one only if
it is exact fit, or, if this a small request, the chunk is remainder from
the most recent non-exact fit.  Place other traversed chunks in
bins.  Note that this step is the only place in any routine where
chunks are placed in bins.

The outer loop here is needed because we might not realize until
near the end of malloc that we should have consolidated, so must
do so and retry. This happens at most once, and only when we would
otherwise need to expand memory to service a "small" request.
*/

#if USE_TCACHE
INTERNAL_SIZE_T tcache_nb = 0;
size_t tc_idx = csize2tidx (nb);
if (tcache != NULL && tc_idx < mp_.tcache_bins)
tcache_nb = nb;
int return_cached = 0;

tcache_unsorted_count = 0;
#endif

for (;; )
{
int iters = 0;
while ((victim = unsorted_chunks (av)->bk) != unsorted_chunks (av))
{
bck = victim->bk;
size = chunksize (victim);
mchunkptr next = chunk_at_offset (victim, size);

if (__glibc_unlikely (size <= CHUNK_HDR_SZ)
|| __glibc_unlikely (size > av->system_mem))
malloc_printerr ("malloc(): invalid size (unsorted)");
if (__glibc_unlikely (chunksize_nomask (next) < CHUNK_HDR_SZ)
|| __glibc_unlikely (chunksize_nomask (next) > av->system_mem))
malloc_printerr ("malloc(): invalid next size (unsorted)");
if (__glibc_unlikely ((prev_size (next) & ~(SIZE_BITS)) != size))
malloc_printerr ("malloc(): mismatching next->prev_size (unsorted)");
if (__glibc_unlikely (bck->fd != victim)
|| __glibc_unlikely (victim->fd != unsorted_chunks (av)))
malloc_printerr ("malloc(): unsorted double linked list corrupted");
if (__glibc_unlikely (prev_inuse (next)))
malloc_printerr ("malloc(): invalid next->prev_inuse (unsorted)");

ikiwa in_smallbin_range

Ikiwa kipande ni kikubwa kuliko saizi iliyohitajika, tumia hiyo, na weka sehemu iliyobaki ya kipande katika orodha isiyo na mpangilio na sasisha last_remainder nayo.

_int_malloc orodha isiyo na mpangilio in_smallbin_range
c
// From https://github.com/bminor/glibc/blob/master/malloc/malloc.c#L4090C11-L4124C14

/*
If a small request, try to use last remainder if it is the
only chunk in unsorted bin.  This helps promote locality for
runs of consecutive small requests. This is the only
exception to best-fit, and applies only when there is
no exact fit for a small chunk.
*/

if (in_smallbin_range (nb) &&
bck == unsorted_chunks (av) &&
victim == av->last_remainder &&
(unsigned long) (size) > (unsigned long) (nb + MINSIZE))
{
/* split and reattach remainder */
remainder_size = size - nb;
remainder = chunk_at_offset (victim, nb);
unsorted_chunks (av)->bk = unsorted_chunks (av)->fd = remainder;
av->last_remainder = remainder;
remainder->bk = remainder->fd = unsorted_chunks (av);
if (!in_smallbin_range (remainder_size))
{
remainder->fd_nextsize = NULL;
remainder->bk_nextsize = NULL;
}

set_head (victim, nb | PREV_INUSE |
(av != &main_arena ? NON_MAIN_ARENA : 0));
set_head (remainder, remainder_size | PREV_INUSE);
set_foot (remainder, remainder_size);

check_malloced_chunk (av, victim, nb);
void *p = chunk2mem (victim);
alloc_perturb (p, bytes);
return p;
}

Ikiwa hii ilifanikiwa, rudisha kipande na imeisha, ikiwa sivyo, endelea kutekeleza kazi...

ikiwa saizi sawa

Endelea kuondoa kipande kutoka kwenye bin, ikiwa saizi iliyohitajika ni sawa na ile ya kipande:

  • Ikiwa tcache haijajazwa, ongeza kwenye tcache na endelea kuonyesha kwamba kuna kipande cha tcache ambacho kinaweza kutumika
  • Ikiwa tcache imejaa, tumia tu kurudisha
_int_malloc unsorted bin equal size
c
// From https://github.com/bminor/glibc/blob/master/malloc/malloc.c#L4126C11-L4157C14

/* remove from unsorted list */
unsorted_chunks (av)->bk = bck;
bck->fd = unsorted_chunks (av);

/* Take now instead of binning if exact fit */

if (size == nb)
{
set_inuse_bit_at_offset (victim, size);
if (av != &main_arena)
set_non_main_arena (victim);
#if USE_TCACHE
/* Fill cache first, return to user only if cache fills.
We may return one of these chunks later.  */
if (tcache_nb > 0
&& tcache->counts[tc_idx] < mp_.tcache_count)
{
tcache_put (victim, tc_idx);
return_cached = 1;
continue;
}
else
{
#endif
check_malloced_chunk (av, victim, nb);
void *p = chunk2mem (victim);
alloc_perturb (p, bytes);
return p;
#if USE_TCACHE
}
#endif
}

Ikiwa chunk haijarudishwa au kuongezwa kwenye tcache, endelea na msimbo...

weka chunk kwenye bin

Hifadhi chunk iliyokaguliwa kwenye bin ndogo au kwenye bin kubwa kulingana na saizi ya chunk (ukihakikisha bin kubwa imeandaliwa vizuri).

Kuna ukaguzi wa usalama unaofanywa ili kuhakikisha kuwa orodha ya viungo viwili vya bin kubwa haijaharibika:

  • Ikiwa fwd->bk_nextsize->fd_nextsize != fwd: malloc(): largebin double linked list corrupted (nextsize)
  • Ikiwa fwd->bk->fd != fwd: malloc(): largebin double linked list corrupted (bk)
_int_malloc weka chunk kwenye bin
c
/* place chunk in bin */

if (in_smallbin_range (size))
{
victim_index = smallbin_index (size);
bck = bin_at (av, victim_index);
fwd = bck->fd;
}
else
{
victim_index = largebin_index (size);
bck = bin_at (av, victim_index);
fwd = bck->fd;

/* maintain large bins in sorted order */
if (fwd != bck)
{
/* Or with inuse bit to speed comparisons */
size |= PREV_INUSE;
/* if smaller than smallest, bypass loop below */
assert (chunk_main_arena (bck->bk));
if ((unsigned long) (size)
< (unsigned long) chunksize_nomask (bck->bk))
{
fwd = bck;
bck = bck->bk;

victim->fd_nextsize = fwd->fd;
victim->bk_nextsize = fwd->fd->bk_nextsize;
fwd->fd->bk_nextsize = victim->bk_nextsize->fd_nextsize = victim;
}
else
{
assert (chunk_main_arena (fwd));
while ((unsigned long) size < chunksize_nomask (fwd))
{
fwd = fwd->fd_nextsize;
assert (chunk_main_arena (fwd));
}

if ((unsigned long) size
== (unsigned long) chunksize_nomask (fwd))
/* Always insert in the second position.  */
fwd = fwd->fd;
else
{
victim->fd_nextsize = fwd;
victim->bk_nextsize = fwd->bk_nextsize;
if (__glibc_unlikely (fwd->bk_nextsize->fd_nextsize != fwd))
malloc_printerr ("malloc(): largebin double linked list corrupted (nextsize)");
fwd->bk_nextsize = victim;
victim->bk_nextsize->fd_nextsize = victim;
}
bck = fwd->bk;
if (bck->fd != fwd)
malloc_printerr ("malloc(): largebin double linked list corrupted (bk)");
}
}
else
victim->fd_nextsize = victim->bk_nextsize = victim;
}

mark_bin (av, victim_index);
victim->bk = bck;
victim->fd = fwd;
fwd->bk = victim;
bck->fd = victim;

_int_malloc mipaka

Katika hatua hii, ikiwa kipande fulani kilihifadhiwa katika tcache ambacho kinaweza kutumika na mipaka imefikiwa, rudisha kipande cha tcache.

Zaidi ya hayo, ikiwa MAX_ITERS imefikiwa, vunja kutoka kwenye mzunguko na pata kipande kwa njia tofauti (kipande cha juu).

Ikiwa return_cached ilipangwa, rudisha tu kipande kutoka tcache ili kuepuka utafutaji mkubwa.

_int_malloc mipaka
c
// From https://github.com/bminor/glibc/blob/master/malloc/malloc.c#L4227C1-L4250C7

#if USE_TCACHE
/* If we've processed as many chunks as we're allowed while
filling the cache, return one of the cached ones.  */
++tcache_unsorted_count;
if (return_cached
&& mp_.tcache_unsorted_limit > 0
&& tcache_unsorted_count > mp_.tcache_unsorted_limit)
{
return tcache_get (tc_idx);
}
#endif

#define MAX_ITERS       10000
if (++iters >= MAX_ITERS)
break;
}

#if USE_TCACHE
/* If all the small chunks we found ended up cached, return one now.  */
if (return_cached)
{
return tcache_get (tc_idx);
}
#endif

Ikiwa mipaka haijafikiwa, endelea na msimbo...

Large Bin (kwa index)

Ikiwa ombi ni kubwa (sio katika bin ndogo) na hatujarudisha kipande chochote bado, pata index ya ukubwa uliotakiwa katika large bin, angalia ikiwa siyo tupu au ikiwa kipande kikubwa zaidi katika bin hii ni kikubwa kuliko ukubwa uliotakiwa na katika hali hiyo pata kipande kidogo zaidi ambacho kinaweza kutumika kwa ukubwa uliotakiwa.

Ikiwa nafasi iliyobaki kutoka kwa kipande kilichotumika hatimaye inaweza kuwa kipande kipya, ongeza kwenye bin isiyo na mpangilio na last_reminder inasasishwa.

Ukaguzi wa usalama unafanywa wakati wa kuongeza kumbukumbu kwenye bin isiyo na mpangilio:

  • bck->fd-> bk != bck: malloc(): corrupted unsorted chunks
_int_malloc Large bin (kwa index)
c
// From https://github.com/bminor/glibc/blob/master/malloc/malloc.c#L4252C7-L4317C10

/*
If a large request, scan through the chunks of current bin in
sorted order to find smallest that fits.  Use the skip list for this.
*/

if (!in_smallbin_range (nb))
{
bin = bin_at (av, idx);

/* skip scan if empty or largest chunk is too small */
if ((victim = first (bin)) != bin
&& (unsigned long) chunksize_nomask (victim)
>= (unsigned long) (nb))
{
victim = victim->bk_nextsize;
while (((unsigned long) (size = chunksize (victim)) <
(unsigned long) (nb)))
victim = victim->bk_nextsize;

/* Avoid removing the first entry for a size so that the skip
list does not have to be rerouted.  */
if (victim != last (bin)
&& chunksize_nomask (victim)
== chunksize_nomask (victim->fd))
victim = victim->fd;

remainder_size = size - nb;
unlink_chunk (av, victim);

/* Exhaust */
if (remainder_size < MINSIZE)
{
set_inuse_bit_at_offset (victim, size);
if (av != &main_arena)
set_non_main_arena (victim);
}
/* Split */
else
{
remainder = chunk_at_offset (victim, nb);
/* We cannot assume the unsorted list is empty and therefore
have to perform a complete insert here.  */
bck = unsorted_chunks (av);
fwd = bck->fd;
if (__glibc_unlikely (fwd->bk != bck))
malloc_printerr ("malloc(): corrupted unsorted chunks");
last_re->bk = bck;
remainder->fd = fwd;
bck->fd = remainder;
fwd->bk = remainder;
if (!in_smallbin_range (remainder_size))
{
remainder->fd_nextsize = NULL;
remainder->bk_nextsize = NULL;
}
set_head (victim, nb | PREV_INUSE |
(av != &main_arena ? NON_MAIN_ARENA : 0));
set_head (remainder, remainder_size | PREV_INUSE);
set_foot (remainder, remainder_size);
}
check_malloced_chunk (av, victim, nb);
void *p = chunk2mem (victim);
alloc_perturb (p, bytes);
return p;
}
}

Ikiwa kipande hakijapatikana kuwa sahihi kwa hili, endelea

Large Bin (kubwa inayofuata)

Ikiwa katika large bin sahihi hakukuwa na kipande chochote ambacho kinaweza kutumika, anza kuzunguka kupitia large bin zote zinazofuata (kuanzia na kubwa inayofuata) hadi kipande kimoja kipatikane (ikiwa kipo).

Kumbukumbu ya kipande kilichogawanywa inaongezwa katika unsorted bin, last_reminder inasasishwa na ukaguzi sawa wa usalama unafanywa:

  • bck->fd-> bk != bck: malloc(): corrupted unsorted chunks2
_int_malloc Large bin (kubwa inayofuata)
c
// From https://github.com/bminor/glibc/blob/master/malloc/malloc.c#L4319C7-L4425C10

/*
Search for a chunk by scanning bins, starting with next largest
bin. This search is strictly by best-fit; i.e., the smallest
(with ties going to approximately the least recently used) chunk
that fits is selected.

The bitmap avoids needing to check that most blocks are nonempty.
The particular case of skipping all bins during warm-up phases
when no chunks have been returned yet is faster than it might look.
*/

++idx;
bin = bin_at (av, idx);
block = idx2block (idx);
map = av->binmap[block];
bit = idx2bit (idx);

for (;; )
{
/* Skip rest of block if there are no more set bits in this block.  */
if (bit > map || bit == 0)
{
do
{
if (++block >= BINMAPSIZE) /* out of bins */
goto use_top;
}
while ((map = av->binmap[block]) == 0);

bin = bin_at (av, (block << BINMAPSHIFT));
bit = 1;
}

/* Advance to bin with set bit. There must be one. */
while ((bit & map) == 0)
{
bin = next_bin (bin);
bit <<= 1;
assert (bit != 0);
}

/* Inspect the bin. It is likely to be non-empty */
victim = last (bin);

/*  If a false alarm (empty bin), clear the bit. */
if (victim == bin)
{
av->binmap[block] = map &= ~bit; /* Write through */
bin = next_bin (bin);
bit <<= 1;
}

else
{
size = chunksize (victim);

/*  We know the first chunk in this bin is big enough to use. */
assert ((unsigned long) (size) >= (unsigned long) (nb));

remainder_size = size - nb;

/* unlink */
unlink_chunk (av, victim);

/* Exhaust */
if (remainder_size < MINSIZE)
{
set_inuse_bit_at_offset (victim, size);
if (av != &main_arena)
set_non_main_arena (victim);
}

/* Split */
else
{
remainder = chunk_at_offset (victim, nb);

/* We cannot assume the unsorted list is empty and therefore
have to perform a complete insert here.  */
bck = unsorted_chunks (av);
fwd = bck->fd;
if (__glibc_unlikely (fwd->bk != bck))
malloc_printerr ("malloc(): corrupted unsorted chunks 2");
remainder->bk = bck;
remainder->fd = fwd;
bck->fd = remainder;
fwd->bk = remainder;

/* advertise as last remainder */
if (in_smallbin_range (nb))
av->last_remainder = remainder;
if (!in_smallbin_range (remainder_size))
{
remainder->fd_nextsize = NULL;
remainder->bk_nextsize = NULL;
}
set_head (victim, nb | PREV_INUSE |
(av != &main_arena ? NON_MAIN_ARENA : 0));
set_head (remainder, remainder_size | PREV_INUSE);
set_foot (remainder, remainder_size);
}
check_malloced_chunk (av, victim, nb);
void *p = chunk2mem (victim);
alloc_perturb (p, bytes);
return p;
}
}

Top Chunk

Katika hatua hii, ni wakati wa kupata kipande kipya kutoka kwa Top chunk (ikiwa ni kikubwa vya kutosha).

Inaanza na ukaguzi wa usalama kuhakikisha kwamba saizi ya kipande sio kubwa sana (imeharibiwa):

  • chunksize(av->top) > av->system_mem: malloc(): corrupted top size

Kisha, itatumia nafasi ya top chunk ikiwa ni kubwa vya kutosha kuunda kipande cha saizi iliyotolewa.
Ikiwa sivyo, ikiwa kuna vipande vya haraka, vunganisha na ujaribu tena.
Hatimaye, ikiwa hakuna nafasi ya kutosha tumia sysmalloc kugawa saizi ya kutosha.

_int_malloc Top chunk
c
use_top:
/*
If large enough, split off the chunk bordering the end of memory
(held in av->top). Note that this is in accord with the best-fit
search rule.  In effect, av->top is treated as larger (and thus
less well fitting) than any other available chunk since it can
be extended to be as large as necessary (up to system
limitations).

We require that av->top always exists (i.e., has size >=
MINSIZE) after initialization, so if it would otherwise be
exhausted by current request, it is replenished. (The main
reason for ensuring it exists is that we may need MINSIZE space
to put in fenceposts in sysmalloc.)
*/

victim = av->top;
size = chunksize (victim);

if (__glibc_unlikely (size > av->system_mem))
malloc_printerr ("malloc(): corrupted top size");

if ((unsigned long) (size) >= (unsigned long) (nb + MINSIZE))
{
remainder_size = size - nb;
remainder = chunk_at_offset (victim, nb);
av->top = remainder;
set_head (victim, nb | PREV_INUSE |
(av != &main_arena ? NON_MAIN_ARENA : 0));
set_head (remainder, remainder_size | PREV_INUSE);

check_malloced_chunk (av, victim, nb);
void *p = chunk2mem (victim);
alloc_perturb (p, bytes);
return p;
}

/* When we are using atomic ops to free fast chunks we can get
here for all block sizes.  */
else if (atomic_load_relaxed (&av->have_fastchunks))
{
malloc_consolidate (av);
/* restore original bin index */
if (in_smallbin_range (nb))
idx = smallbin_index (nb);
else
idx = largebin_index (nb);
}

/*
Otherwise, relay to handle system-dependent cases
*/
else
{
void *p = sysmalloc (nb, av);
if (p != NULL)
alloc_perturb (p, bytes);
return p;
}
}
}

sysmalloc

sysmalloc kuanza

Ikiwa arena ni null au saizi iliyohitajika ni kubwa sana (na kuna mmaps zilizobaki zinazoruhusiwa) tumia sysmalloc_mmap kutenga nafasi na kuirudisha.

sysmalloc kuanza
c
// From https://github.com/bminor/glibc/blob/f942a732d37a96217ef828116ebe64a644db18d7/malloc/malloc.c#L2531

/*
sysmalloc handles malloc cases requiring more memory from the system.
On entry, it is assumed that av->top does not have enough
space to service request for nb bytes, thus requiring that av->top
be extended or replaced.
*/

static void *
sysmalloc (INTERNAL_SIZE_T nb, mstate av)
{
mchunkptr old_top;              /* incoming value of av->top */
INTERNAL_SIZE_T old_size;       /* its size */
char *old_end;                  /* its end address */

long size;                      /* arg to first MORECORE or mmap call */
char *brk;                      /* return value from MORECORE */

long correction;                /* arg to 2nd MORECORE call */
char *snd_brk;                  /* 2nd return val */

INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of new space */
INTERNAL_SIZE_T end_misalign;   /* partial page left at end of new space */
char *aligned_brk;              /* aligned offset into brk */

mchunkptr p;                    /* the allocated/returned chunk */
mchunkptr remainder;            /* remainder from allocation */
unsigned long remainder_size;   /* its size */


size_t pagesize = GLRO (dl_pagesize);
bool tried_mmap = false;


/*
If have mmap, and the request size meets the mmap threshold, and
the system supports mmap, and there are few enough currently
allocated mmapped regions, try to directly map this request
rather than expanding top.
*/

if (av == NULL
|| ((unsigned long) (nb) >= (unsigned long) (mp_.mmap_threshold)
&& (mp_.n_mmaps < mp_.n_mmaps_max)))
{
char *mm;
if (mp_.hp_pagesize > 0 && nb >= mp_.hp_pagesize)
{
/* There is no need to issue the THP madvise call if Huge Pages are
used directly.  */
mm = sysmalloc_mmap (nb, mp_.hp_pagesize, mp_.hp_flags, av);
if (mm != MAP_FAILED)
return mm;
}
mm = sysmalloc_mmap (nb, pagesize, 0, av);
if (mm != MAP_FAILED)
return mm;
tried_mmap = true;
}

/* There are no usable arenas and mmap also failed.  */
if (av == NULL)
return 0;

sysmalloc checks

Inaanza kwa kupata taarifa za zamani za top chunk na kuangalia kwamba baadhi ya masharti yafuatayo ni ya kweli:

  • Ukubwa wa zamani wa heap ni 0 (heap mpya)
  • Ukubwa wa heap ya awali ni mkubwa kuliko MINSIZE na Old Top inatumika
  • Heap imepangwa kwa saizi ya ukurasa (0x1000 hivyo bits 12 za chini zinahitaji kuwa 0)

Kisha pia inaangalia kwamba:

  • Ukubwa wa zamani hauna nafasi ya kutosha kuunda chunk kwa ukubwa ulioombwa
sysmalloc checks
c
/* Record incoming configuration of top */

old_top = av->top;
old_size = chunksize (old_top);
old_end = (char *) (chunk_at_offset (old_top, old_size));

brk = snd_brk = (char *) (MORECORE_FAILURE);

/*
If not the first time through, we require old_size to be
at least MINSIZE and to have prev_inuse set.
*/

assert ((old_top == initial_top (av) && old_size == 0) ||
((unsigned long) (old_size) >= MINSIZE &&
prev_inuse (old_top) &&
((unsigned long) old_end & (pagesize - 1)) == 0));

/* Precondition: not enough current space to satisfy nb request */
assert ((unsigned long) (old_size) < (unsigned long) (nb + MINSIZE));

sysmalloc si eneo kuu

Itajaribu kwanza kupanua heap ya awali kwa ajili ya heap hii. Ikiwa haiwezekani, jaribu kugawa heap mpya na kusasisha viashiria ili uweze kuitumia.
Hatimaye, ikiwa hiyo haikufanya kazi, jaribu kuita sysmalloc_mmap.

sysmalloc si eneo kuu
c
if (av != &main_arena)
{
heap_info *old_heap, *heap;
size_t old_heap_size;

/* First try to extend the current heap. */
old_heap = heap_for_ptr (old_top);
old_heap_size = old_heap->size;
if ((long) (MINSIZE + nb - old_size) > 0
&& grow_heap (old_heap, MINSIZE + nb - old_size) == 0)
{
av->system_mem += old_heap->size - old_heap_size;
set_head (old_top, (((char *) old_heap + old_heap->size) - (char *) old_top)
| PREV_INUSE);
}
else if ((heap = new_heap (nb + (MINSIZE + sizeof (*heap)), mp_.top_pad)))
{
/* Use a newly allocated heap.  */
heap->ar_ptr = av;
heap->prev = old_heap;
av->system_mem += heap->size;
/* Set up the new top.  */
top (av) = chunk_at_offset (heap, sizeof (*heap));
set_head (top (av), (heap->size - sizeof (*heap)) | PREV_INUSE);

/* Setup fencepost and free the old top chunk with a multiple of
MALLOC_ALIGNMENT in size. */
/* The fencepost takes at least MINSIZE bytes, because it might
become the top chunk again later.  Note that a footer is set
up, too, although the chunk is marked in use. */
old_size = (old_size - MINSIZE) & ~MALLOC_ALIGN_MASK;
set_head (chunk_at_offset (old_top, old_size + CHUNK_HDR_SZ),
0 | PREV_INUSE);
if (old_size >= MINSIZE)
{
set_head (chunk_at_offset (old_top, old_size),
CHUNK_HDR_SZ | PREV_INUSE);
set_foot (chunk_at_offset (old_top, old_size), CHUNK_HDR_SZ);
set_head (old_top, old_size | PREV_INUSE | NON_MAIN_ARENA);
_int_free (av, old_top, 1);
}
else
{
set_head (old_top, (old_size + CHUNK_HDR_SZ) | PREV_INUSE);
set_foot (old_top, (old_size + CHUNK_HDR_SZ));
}
}
else if (!tried_mmap)
{
/* We can at least try to use to mmap memory.  If new_heap fails
it is unlikely that trying to allocate huge pages will
succeed.  */
char *mm = sysmalloc_mmap (nb, pagesize, 0, av);
if (mm != MAP_FAILED)
return mm;
}
}

sysmalloc main arena

Inaanza kuhesabu kiasi cha kumbukumbu kinachohitajika. Itaanza kwa kuomba kumbukumbu iliyo karibu ili katika kesi hii itakuwa inawezekana kutumia kumbukumbu ya zamani isiyotumika. Pia baadhi ya operesheni za kuoanisha zinafanywa.

sysmalloc main arena
c
// From https://github.com/bminor/glibc/blob/f942a732d37a96217ef828116ebe64a644db18d7/malloc/malloc.c#L2665C1-L2713C10

else     /* av == main_arena */


{ /* Request enough space for nb + pad + overhead */
size = nb + mp_.top_pad + MINSIZE;

/*
If contiguous, we can subtract out existing space that we hope to
combine with new space. We add it back later only if
we don't actually get contiguous space.
*/

if (contiguous (av))
size -= old_size;

/*
Round to a multiple of page size or huge page size.
If MORECORE is not contiguous, this ensures that we only call it
with whole-page arguments.  And if MORECORE is contiguous and
this is not first time through, this preserves page-alignment of
previous calls. Otherwise, we correct to page-align below.
*/

#ifdef MADV_HUGEPAGE
/* Defined in brk.c.  */
extern void *__curbrk;
if (__glibc_unlikely (mp_.thp_pagesize != 0))
{
uintptr_t top = ALIGN_UP ((uintptr_t) __curbrk + size,
mp_.thp_pagesize);
size = top - (uintptr_t) __curbrk;
}
else
#endif
size = ALIGN_UP (size, GLRO(dl_pagesize));

/*
Don't try to call MORECORE if argument is so big as to appear
negative. Note that since mmap takes size_t arg, it may succeed
below even if we cannot call MORECORE.
*/

if (size > 0)
{
brk = (char *) (MORECORE (size));
if (brk != (char *) (MORECORE_FAILURE))
madvise_thp (brk, size);
LIBC_PROBE (memory_sbrk_more, 2, brk, size);
}

sysmalloc makao ya awali kosa 1

Ikiwa kosa lililopita lilirudishwa MORECORE_FAILURE, jaribu tena kugawa kumbukumbu kwa kutumia sysmalloc_mmap_fallback

sysmalloc makao ya awali kosa 1
c
// From https://github.com/bminor/glibc/blob/f942a732d37a96217ef828116ebe64a644db18d7/malloc/malloc.c#L2715C7-L2740C10

if (brk == (char *) (MORECORE_FAILURE))
{
/*
If have mmap, try using it as a backup when MORECORE fails or
cannot be used. This is worth doing on systems that have "holes" in
address space, so sbrk cannot extend to give contiguous space, but
space is available elsewhere.  Note that we ignore mmap max count
and threshold limits, since the space will not be used as a
segregated mmap region.
*/

char *mbrk = MAP_FAILED;
if (mp_.hp_pagesize > 0)
mbrk = sysmalloc_mmap_fallback (&size, nb, old_size,
mp_.hp_pagesize, mp_.hp_pagesize,
mp_.hp_flags, av);
if (mbrk == MAP_FAILED)
mbrk = sysmalloc_mmap_fallback (&size, nb, old_size, MMAP_AS_MORECORE_SIZE,
pagesize, 0, av);
if (mbrk != MAP_FAILED)
{
/* We do not need, and cannot use, another sbrk call to find end */
brk = mbrk;
snd_brk = brk + size;
}
}

sysmalloc main arena endelea

Ikiwa ya awali haikurejea MORECORE_FAILURE, ikiwa ilifanya kazi tengeneza baadhi ya usawa:

sysmalloc main arena kosa la awali 2
c
// From https://github.com/bminor/glibc/blob/f942a732d37a96217ef828116ebe64a644db18d7/malloc/malloc.c#L2742

if (brk != (char *) (MORECORE_FAILURE))
{
if (mp_.sbrk_base == 0)
mp_.sbrk_base = brk;
av->system_mem += size;

/*
If MORECORE extends previous space, we can likewise extend top size.
*/

if (brk == old_end && snd_brk == (char *) (MORECORE_FAILURE))
set_head (old_top, (size + old_size) | PREV_INUSE);

else if (contiguous (av) && old_size && brk < old_end)
/* Oops!  Someone else killed our space..  Can't touch anything.  */
malloc_printerr ("break adjusted to free malloc space");

/*
Otherwise, make adjustments:

* If the first time through or noncontiguous, we need to call sbrk
just to find out where the end of memory lies.

* We need to ensure that all returned chunks from malloc will meet
MALLOC_ALIGNMENT

* If there was an intervening foreign sbrk, we need to adjust sbrk
request size to account for fact that we will not be able to
combine new space with existing space in old_top.

* Almost all systems internally allocate whole pages at a time, in
which case we might as well use the whole last page of request.
So we allocate enough more memory to hit a page boundary now,
which in turn causes future contiguous calls to page-align.
*/

else
{
front_misalign = 0;
end_misalign = 0;
correction = 0;
aligned_brk = brk;

/* handle contiguous cases */
if (contiguous (av))
{
/* Count foreign sbrk as system_mem.  */
if (old_size)
av->system_mem += brk - old_end;

/* Guarantee alignment of first new chunk made from this space */

front_misalign = (INTERNAL_SIZE_T) chunk2mem (brk) & MALLOC_ALIGN_MASK;
if (front_misalign > 0)
{
/*
Skip over some bytes to arrive at an aligned position.
We don't need to specially mark these wasted front bytes.
They will never be accessed anyway because
prev_inuse of av->top (and any chunk created from its start)
is always true after initialization.
*/

correction = MALLOC_ALIGNMENT - front_misalign;
aligned_brk += correction;
}

/*
If this isn't adjacent to existing space, then we will not
be able to merge with old_top space, so must add to 2nd request.
*/

correction += old_size;

/* Extend the end address to hit a page boundary */
end_misalign = (INTERNAL_SIZE_T) (brk + size + correction);
correction += (ALIGN_UP (end_misalign, pagesize)) - end_misalign;

assert (correction >= 0);
snd_brk = (char *) (MORECORE (correction));

/*
If can't allocate correction, try to at least find out current
brk.  It might be enough to proceed without failing.

Note that if second sbrk did NOT fail, we assume that space
is contiguous with first sbrk. This is a safe assumption unless
program is multithreaded but doesn't use locks and a foreign sbrk
occurred between our first and second calls.
*/

if (snd_brk == (char *) (MORECORE_FAILURE))
{
correction = 0;
snd_brk = (char *) (MORECORE (0));
}
else
madvise_thp (snd_brk, correction);
}

/* handle non-contiguous cases */
else
{
if (MALLOC_ALIGNMENT == CHUNK_HDR_SZ)
/* MORECORE/mmap must correctly align */
assert (((unsigned long) chunk2mem (brk) & MALLOC_ALIGN_MASK) == 0);
else
{
front_misalign = (INTERNAL_SIZE_T) chunk2mem (brk) & MALLOC_ALIGN_MASK;
if (front_misalign > 0)
{
/*
Skip over some bytes to arrive at an aligned position.
We don't need to specially mark these wasted front bytes.
They will never be accessed anyway because
prev_inuse of av->top (and any chunk created from its start)
is always true after initialization.
*/

aligned_brk += MALLOC_ALIGNMENT - front_misalign;
}
}

/* Find out current end of memory */
if (snd_brk == (char *) (MORECORE_FAILURE))
{
snd_brk = (char *) (MORECORE (0));
}
}

/* Adjust top based on results of second sbrk */
if (snd_brk != (char *) (MORECORE_FAILURE))
{
av->top = (mchunkptr) aligned_brk;
set_head (av->top, (snd_brk - aligned_brk + correction) | PREV_INUSE);
av->system_mem += correction;

/*
If not the first time through, we either have a
gap due to foreign sbrk or a non-contiguous region.  Insert a
double fencepost at old_top to prevent consolidation with space
we don't own. These fenceposts are artificial chunks that are
marked as inuse and are in any case too small to use.  We need
two to make sizes and alignments work out.
*/

if (old_size != 0)
{
/*
Shrink old_top to insert fenceposts, keeping size a
multiple of MALLOC_ALIGNMENT. We know there is at least
enough space in old_top to do this.
*/
old_size = (old_size - 2 * CHUNK_HDR_SZ) & ~MALLOC_ALIGN_MASK;
set_head (old_top, old_size | PREV_INUSE);

/*
Note that the following assignments completely overwrite
old_top when old_size was previously MINSIZE.  This is
intentional. We need the fencepost, even if old_top otherwise gets
lost.
*/
set_head (chunk_at_offset (old_top, old_size),
CHUNK_HDR_SZ | PREV_INUSE);
set_head (chunk_at_offset (old_top,
old_size + CHUNK_HDR_SZ),
CHUNK_HDR_SZ | PREV_INUSE);

/* If possible, release the rest. */
if (old_size >= MINSIZE)
{
_int_free (av, old_top, 1);
}
}
}
}
}
} /* if (av !=  &main_arena) */

sysmalloc finale

Maliza ugawaji kwa kusasisha taarifa za arena

c
// From https://github.com/bminor/glibc/blob/f942a732d37a96217ef828116ebe64a644db18d7/malloc/malloc.c#L2921C3-L2943C12

if ((unsigned long) av->system_mem > (unsigned long) (av->max_system_mem))
av->max_system_mem = av->system_mem;
check_malloc_state (av);

/* finally, do the allocation */
p = av->top;
size = chunksize (p);

/* check that one of the above allocation paths succeeded */
if ((unsigned long) (size) >= (unsigned long) (nb + MINSIZE))
{
remainder_size = size - nb;
remainder = chunk_at_offset (p, nb);
av->top = remainder;
set_head (p, nb | PREV_INUSE | (av != &main_arena ? NON_MAIN_ARENA : 0));
set_head (remainder, remainder_size | PREV_INUSE);
check_malloced_chunk (av, p, nb);
return chunk2mem (p);
}

/* catch all failure paths */
__set_errno (ENOMEM);
return 0;

sysmalloc_mmap

sysmalloc_mmap code
c
// From https://github.com/bminor/glibc/blob/f942a732d37a96217ef828116ebe64a644db18d7/malloc/malloc.c#L2392C1-L2481C2

static void *
sysmalloc_mmap (INTERNAL_SIZE_T nb, size_t pagesize, int extra_flags, mstate av)
{
long int size;

/*
Round up size to nearest page.  For mmapped chunks, the overhead is one
SIZE_SZ unit larger than for normal chunks, because there is no
following chunk whose prev_size field could be used.

See the front_misalign handling below, for glibc there is no need for
further alignments unless we have have high alignment.
*/
if (MALLOC_ALIGNMENT == CHUNK_HDR_SZ)
size = ALIGN_UP (nb + SIZE_SZ, pagesize);
else
size = ALIGN_UP (nb + SIZE_SZ + MALLOC_ALIGN_MASK, pagesize);

/* Don't try if size wraps around 0.  */
if ((unsigned long) (size) <= (unsigned long) (nb))
return MAP_FAILED;

char *mm = (char *) MMAP (0, size,
mtag_mmap_flags | PROT_READ | PROT_WRITE,
extra_flags);
if (mm == MAP_FAILED)
return mm;

#ifdef MAP_HUGETLB
if (!(extra_flags & MAP_HUGETLB))
madvise_thp (mm, size);
#endif

__set_vma_name (mm, size, " glibc: malloc");

/*
The offset to the start of the mmapped region is stored in the prev_size
field of the chunk.  This allows us to adjust returned start address to
meet alignment requirements here and in memalign(), and still be able to
compute proper address argument for later munmap in free() and realloc().
*/

INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of new space */

if (MALLOC_ALIGNMENT == CHUNK_HDR_SZ)
{
/* For glibc, chunk2mem increases the address by CHUNK_HDR_SZ and
MALLOC_ALIGN_MASK is CHUNK_HDR_SZ-1.  Each mmap'ed area is page
aligned and therefore definitely MALLOC_ALIGN_MASK-aligned.  */
assert (((INTERNAL_SIZE_T) chunk2mem (mm) & MALLOC_ALIGN_MASK) == 0);
front_misalign = 0;
}
else
front_misalign = (INTERNAL_SIZE_T) chunk2mem (mm) & MALLOC_ALIGN_MASK;

mchunkptr p;                    /* the allocated/returned chunk */

if (front_misalign > 0)
{
ptrdiff_t correction = MALLOC_ALIGNMENT - front_misalign;
p = (mchunkptr) (mm + correction);
set_prev_size (p, correction);
set_head (p, (size - correction) | IS_MMAPPED);
}
else
{
p = (mchunkptr) mm;
set_prev_size (p, 0);
set_head (p, size | IS_MMAPPED);
}

/* update statistics */
int new = atomic_fetch_add_relaxed (&mp_.n_mmaps, 1) + 1;
atomic_max (&mp_.max_n_mmaps, new);

unsigned long sum;
sum = atomic_fetch_add_relaxed (&mp_.mmapped_mem, size) + size;
atomic_max (&mp_.max_mmapped_mem, sum);

check_chunk (av, p);

return chunk2mem (p);
}

tip

Jifunze na fanya mazoezi ya AWS Hacking:HackTricks Training AWS Red Team Expert (ARTE)
Jifunze na fanya mazoezi ya GCP Hacking: HackTricks Training GCP Red Team Expert (GRTE)

Support HackTricks