ELF Msingi wa Taarifa
Reading time: 18 minutes
tip
Jifunze na fanya mazoezi ya AWS Hacking:HackTricks Training AWS Red Team Expert (ARTE)
Jifunze na fanya mazoezi ya GCP Hacking: HackTricks Training GCP Red Team Expert (GRTE)
Jifunze na fanya mazoezi ya Azure Hacking:
HackTricks Training Azure Red Team Expert (AzRTE)
Support HackTricks
- Angalia mpango wa usajili!
- Jiunge na π¬ kikundi cha Discord au kikundi cha telegram au tufuatilie kwenye Twitter π¦ @hacktricks_live.
- Shiriki mbinu za hacking kwa kuwasilisha PRs kwa HackTricks na HackTricks Cloud repos za github.
Vichwa vya Programu
Vinavyoelezea kwa mzigo jinsi ya kupakia ELF kwenye kumbukumbu:
readelf -lW lnstat
Elf file type is DYN (Position-Independent Executable file)
Entry point 0x1c00
There are 9 program headers, starting at offset 64
Program Headers:
Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
PHDR 0x000040 0x0000000000000040 0x0000000000000040 0x0001f8 0x0001f8 R 0x8
INTERP 0x000238 0x0000000000000238 0x0000000000000238 0x00001b 0x00001b R 0x1
[Requesting program interpreter: /lib/ld-linux-aarch64.so.1]
LOAD 0x000000 0x0000000000000000 0x0000000000000000 0x003f7c 0x003f7c R E 0x10000
LOAD 0x00fc48 0x000000000001fc48 0x000000000001fc48 0x000528 0x001190 RW 0x10000
DYNAMIC 0x00fc58 0x000000000001fc58 0x000000000001fc58 0x000200 0x000200 RW 0x8
NOTE 0x000254 0x0000000000000254 0x0000000000000254 0x0000e0 0x0000e0 R 0x4
GNU_EH_FRAME 0x003610 0x0000000000003610 0x0000000000003610 0x0001b4 0x0001b4 R 0x4
GNU_STACK 0x000000 0x0000000000000000 0x0000000000000000 0x000000 0x000000 RW 0x10
GNU_RELRO 0x00fc48 0x000000000001fc48 0x000000000001fc48 0x0003b8 0x0003b8 R 0x1
Section to Segment mapping:
Segment Sections...
00
01 .interp
02 .interp .note.gnu.build-id .note.ABI-tag .note.package .gnu.hash .dynsym .dynstr .gnu.version .gnu.version_r .rela.dyn .rela.plt .init .plt .text .fini .rodata .eh_frame_hdr .eh_frame
03 .init_array .fini_array .dynamic .got .data .bss
04 .dynamic
05 .note.gnu.build-id .note.ABI-tag .note.package
06 .eh_frame_hdr
07
08 .init_array .fini_array .dynamic .got
The previous program has 9 program headers, then, the segment mapping indicates in which program header (from 00 to 08) each section is located.
PHDR - Program HeaDeR
Inajumuisha meza za vichwa vya programu na metadata yenyewe.
INTERP
Inaonyesha njia ya loader inayopaswa kutumika kupakia binary kwenye kumbukumbu.
Tip: Statically linked or static-PIE binaries wonβt have an
INTERP
entry. In those cases there is no dynamic loader involved, which disables techniques that rely on it (e.g.,ret2dlresolve
).
LOAD
Vichwa hivi vinatumika kuonyesha jinsi ya kupakia binary kwenye kumbukumbu.
Kila LOAD header inaonyesha eneo la kumbukumbu (ukubwa, ruhusa na usawa) na inaonyesha bytes za ELF binary za kunakili huko.
Kwa mfano, ya pili ina ukubwa wa 0x1190, inapaswa kuwa kwenye 0x1fc48 ikiwa na ruhusa za kusoma na kuandika na itajazwa na 0x528 kutoka kwenye ofset 0xfc48 (haitajazi nafasi yote iliyohifadhiwa). Kumbukumbu hii itakuwa na sehemu .init_array .fini_array .dynamic .got .data .bss
.
DYNAMIC
Hii header inasaidia kuunganisha programu na utegemezi wao wa maktaba na kutekeleza uhamasishaji. Angalia sehemu .dynamic
.
NOTE
Hii inahifadhi taarifa za metadata za muuzaji kuhusu binary.
- Kwenye x86-64,
readelf -n
itaonyesha benderaGNU_PROPERTY_X86_FEATURE_1_*
ndani ya.note.gnu.property
. Ikiwa unaonaIBT
na/auSHSTK
, binary ilijengwa na CET (Ufuatiliaji wa Tawi la Kando na/au Stack ya Kivuli). Hii inaathiri ROP/JOP kwa sababu malengo ya tawi la kando lazima yaanze na amri yaENDBR64
na marejeo yanakaguliwa dhidi ya stack ya kivuli. Angalia ukurasa wa CET kwa maelezo na vidokezo vya kupita.
GNU_EH_FRAME
Inafafanua eneo la meza za kugeuza stack, zinazotumiwa na debuggers na kazi za usimamizi wa makosa ya C++.
GNU_STACK
Inajumuisha usanidi wa ulinzi wa kuzuia utekelezaji wa stack. Ikiwa imewezeshwa, binary haitakuwa na uwezo wa kutekeleza msimbo kutoka kwenye stack.
- Angalia kwa
readelf -l ./bin | grep GNU_STACK
. Ili kulazimisha kubadilisha wakati wa majaribio unaweza kutumiaexecstack -s|-c ./bin
.
GNU_RELRO
Inaonyesha usanidi wa RELRO (Relocation Read-Only) wa binary. Ulinzi huu utaashiria kama isiyo na kusoma sehemu fulani za kumbukumbu (kama GOT
au meza za init
na fini
) baada ya programu kupakiwa na kabla ya kuanza kutekeleza.
Katika mfano wa awali inakopi bytes 0x3b8 hadi 0x1fc48 kama zisizo na kusoma zikihusisha sehemu .init_array .fini_array .dynamic .got .data .bss
.
Kumbuka kwamba RELRO inaweza kuwa ya sehemu au kamili, toleo la sehemu halilindi sehemu .plt.got
, ambayo inatumika kwa lazy binding na inahitaji nafasi hii ya kumbukumbu kuwa na ruhusa za kuandika ili kuandika anwani za maktaba wakati wa kwanza mahali pake inatafutwa.
Kwa mbinu za unyakuzi na vidokezo vya kupita vya kisasa, angalia ukurasa maalum:
TLS
Inafafanua meza ya entries za TLS, ambayo inahifadhi taarifa kuhusu mabadiliko ya ndani ya nyuzi.
Section Headers
Vichwa vya sehemu vinatoa mtazamo wa kina zaidi wa ELF binary.
objdump lnstat -h
lnstat: file format elf64-littleaarch64
Sections:
Idx Name Size VMA LMA File off Algn
0 .interp 0000001b 0000000000000238 0000000000000238 00000238 2**0
CONTENTS, ALLOC, LOAD, READONLY, DATA
1 .note.gnu.build-id 00000024 0000000000000254 0000000000000254 00000254 2**2
CONTENTS, ALLOC, LOAD, READONLY, DATA
2 .note.ABI-tag 00000020 0000000000000278 0000000000000278 00000278 2**2
CONTENTS, ALLOC, LOAD, READONLY, DATA
3 .note.package 0000009c 0000000000000298 0000000000000298 00000298 2**2
CONTENTS, ALLOC, LOAD, READONLY, DATA
4 .gnu.hash 0000001c 0000000000000338 0000000000000338 00000338 2**3
CONTENTS, ALLOC, LOAD, READONLY, DATA
5 .dynsym 00000498 0000000000000358 0000000000000358 00000358 2**3
CONTENTS, ALLOC, LOAD, READONLY, DATA
6 .dynstr 000001fe 00000000000007f0 00000000000007f0 000007f0 2**0
CONTENTS, ALLOC, LOAD, READONLY, DATA
7 .gnu.version 00000062 00000000000009ee 00000000000009ee 000009ee 2**1
CONTENTS, ALLOC, LOAD, READONLY, DATA
8 .gnu.version_r 00000050 0000000000000a50 0000000000000a50 00000a50 2**3
CONTENTS, ALLOC, LOAD, READONLY, DATA
9 .rela.dyn 00000228 0000000000000aa0 0000000000000aa0 00000aa0 2**3
CONTENTS, ALLOC, LOAD, READONLY, DATA
10 .rela.plt 000003c0 0000000000000cc8 0000000000000cc8 00000cc8 2**3
CONTENTS, ALLOC, LOAD, READONLY, DATA
11 .init 00000018 0000000000001088 0000000000001088 00001088 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE
12 .plt 000002a0 00000000000010a0 00000000000010a0 000010a0 2**4
CONTENTS, ALLOC, LOAD, READONLY, CODE
13 .text 00001c34 0000000000001340 0000000000001340 00001340 2**6
CONTENTS, ALLOC, LOAD, READONLY, CODE
14 .fini 00000014 0000000000002f74 0000000000002f74 00002f74 2**2
CONTENTS, ALLOC, LOAD, READONLY, CODE
15 .rodata 00000686 0000000000002f88 0000000000002f88 00002f88 2**3
CONTENTS, ALLOC, LOAD, READONLY, DATA
16 .eh_frame_hdr 000001b4 0000000000003610 0000000000003610 00003610 2**2
CONTENTS, ALLOC, LOAD, READONLY, DATA
17 .eh_frame 000007b4 00000000000037c8 00000000000037c8 000037c8 2**3
CONTENTS, ALLOC, LOAD, READONLY, DATA
18 .init_array 00000008 000000000001fc48 000000000001fc48 0000fc48 2**3
CONTENTS, ALLOC, LOAD, DATA
19 .fini_array 00000008 000000000001fc50 000000000001fc50 0000fc50 2**3
CONTENTS, ALLOC, LOAD, DATA
20 .dynamic 00000200 000000000001fc58 000000000001fc58 0000fc58 2**3
CONTENTS, ALLOC, LOAD, DATA
21 .got 000001a8 000000000001fe58 000000000001fe58 0000fe58 2**3
CONTENTS, ALLOC, LOAD, DATA
22 .data 00000170 0000000000020000 0000000000020000 00010000 2**3
CONTENTS, ALLOC, LOAD, DATA
23 .bss 00000c68 0000000000020170 0000000000020170 00010170 2**3
ALLOC
24 .gnu_debugaltlink 00000049 0000000000000000 0000000000000000 00010170 2**0
CONTENTS, READONLY
25 .gnu_debuglink 00000034 0000000000000000 0000000000000000 000101bc 2**2
CONTENTS, READONLY
It also indicates the location, offset, permissions but also the aina ya data it section has.
Meta Sections
- String table: Inayo kila nyuzi zinazohitajika na faili ya ELF (lakini si zile zinazotumiwa na programu). Kwa mfano inajumuisha majina ya sehemu kama
.text
au.data
. Na ikiwa.text
iko kwenye offset 45 katika jedwali la nyuzi itatumia nambari 45 katika uwanja wa jina. - Ili kupata mahali ambapo jedwali la nyuzi liko, ELF ina kipanga njia kwa jedwali la nyuzi.
- Symbol table: Inayo taarifa kuhusu alama kama jina (offset katika jedwali la nyuzi), anwani, ukubwa na metadata zaidi kuhusu alama.
Main Sections
.text
: Maagizo ya programu ya kuendesha..data
: Vigezo vya kimataifa vyenye thamani iliyofafanuliwa katika programu..bss
: Vigezo vya kimataifa vilivyotelekezwa (au kuanzishwa kuwa sifuri). Vigezo hapa vinakaguliwa kiotomatiki kuwa sifuri hivyo kuzuia sifuri zisizohitajika kuongezwa kwenye binary..rodata
: Vigezo vya kimataifa vya kudumu (sehemu ya kusoma tu)..tdata
na.tbss
: Kama .data na .bss wakati vigezo vya ndani ya thread vinapotumika (__thread_local
katika C++ au__thread
katika C)..dynamic
: Angalia hapa chini.
Symbols
Symbols ni eneo lenye jina katika programu ambalo linaweza kuwa kazi, kitu cha data cha kimataifa, vigezo vya ndani ya thread...
readelf -s lnstat
Symbol table '.dynsym' contains 49 entries:
Num: Value Size Type Bind Vis Ndx Name
0: 0000000000000000 0 NOTYPE LOCAL DEFAULT UND
1: 0000000000001088 0 SECTION LOCAL DEFAULT 12 .init
2: 0000000000020000 0 SECTION LOCAL DEFAULT 23 .data
3: 0000000000000000 0 FUNC GLOBAL DEFAULT UND strtok@GLIBC_2.17 (2)
4: 0000000000000000 0 FUNC GLOBAL DEFAULT UND s[...]@GLIBC_2.17 (2)
5: 0000000000000000 0 FUNC GLOBAL DEFAULT UND strlen@GLIBC_2.17 (2)
6: 0000000000000000 0 FUNC GLOBAL DEFAULT UND fputs@GLIBC_2.17 (2)
7: 0000000000000000 0 FUNC GLOBAL DEFAULT UND exit@GLIBC_2.17 (2)
8: 0000000000000000 0 FUNC GLOBAL DEFAULT UND _[...]@GLIBC_2.34 (3)
9: 0000000000000000 0 FUNC GLOBAL DEFAULT UND perror@GLIBC_2.17 (2)
10: 0000000000000000 0 NOTYPE WEAK DEFAULT UND _ITM_deregisterT[...]
11: 0000000000000000 0 FUNC WEAK DEFAULT UND _[...]@GLIBC_2.17 (2)
12: 0000000000000000 0 FUNC GLOBAL DEFAULT UND putc@GLIBC_2.17 (2)
[...]
Kila kipengele cha alama kina:
- Jina
- Sifa za uhusiano (dhaifu, za ndani au za kimataifa): Alama ya ndani inaweza kufikiwa tu na programu yenyewe wakati alama za kimataifa zinashirikiwa nje ya programu. Kitu dhaifu ni mfano wa kazi ambayo inaweza kubadilishwa na nyingine.
- Aina: NOTYPE (aina haijabainishwa), OBJECT (kibadilisha data za kimataifa), FUNC (kazi), SECTION (sehemu), FILE (faili ya msimbo wa chanzo kwa ajili ya wadhibiti), TLS (kibadilisha cha nyuzi za ndani), GNU_IFUNC (kazi isiyo ya moja kwa moja kwa ajili ya uhamasishaji)
- Sehemu index ambapo iko
- Thamani (anwani katika kumbukumbu)
- Ukubwa
GNU Symbol Versioning (dynsym/dynstr/gnu.version)
Modern glibc inatumia toleo la alama. Utapata vipengele katika .gnu.version
na .gnu.version_r
na majina ya alama kama strlen@GLIBC_2.17
. Linker ya dynamic inaweza kuhitaji toleo maalum wakati wa kutatua alama. Wakati wa kuunda uhamasishaji wa mikono (mfano: ret2dlresolve) lazima utoe index sahihi ya toleo, vinginevyo kutatua kutashindwa.
Sehemu ya Dynamic
readelf -d lnstat
Dynamic section at offset 0xfc58 contains 28 entries:
Tag Type Name/Value
0x0000000000000001 (NEEDED) Shared library: [libc.so.6]
0x0000000000000001 (NEEDED) Shared library: [ld-linux-aarch64.so.1]
0x000000000000000c (INIT) 0x1088
0x000000000000000d (FINI) 0x2f74
0x0000000000000019 (INIT_ARRAY) 0x1fc48
0x000000000000001b (INIT_ARRAYSZ) 8 (bytes)
0x000000000000001a (FINI_ARRAY) 0x1fc50
0x000000000000001c (FINI_ARRAYSZ) 8 (bytes)
0x000000006ffffef5 (GNU_HASH) 0x338
0x0000000000000005 (STRTAB) 0x7f0
0x0000000000000006 (SYMTAB) 0x358
0x000000000000000a (STRSZ) 510 (bytes)
0x000000000000000b (SYMENT) 24 (bytes)
0x0000000000000015 (DEBUG) 0x0
0x0000000000000003 (PLTGOT) 0x1fe58
0x0000000000000002 (PLTRELSZ) 960 (bytes)
0x0000000000000014 (PLTREL) RELA
0x0000000000000017 (JMPREL) 0xcc8
0x0000000000000007 (RELA) 0xaa0
0x0000000000000008 (RELASZ) 552 (bytes)
0x0000000000000009 (RELAENT) 24 (bytes)
0x000000000000001e (FLAGS) BIND_NOW
0x000000006ffffffb (FLAGS_1) Flags: NOW PIE
0x000000006ffffffe (VERNEED) 0xa50
0x000000006fffffff (VERNEEDNUM) 2
0x000000006ffffff0 (VERSYM) 0x9ee
0x000000006ffffff9 (RELACOUNT) 15
0x0000000000000000 (NULL) 0x0
The NEEDED directory indicates that the program inahitaji kupakia maktaba iliyoelezwa ili kuendelea. The NEEDED directory completes once the shared maktaba imefanya kazi kikamilifu na iko tayari kwa matumizi.
Dynamic loader search order (RPATH/RUNPATH, $ORIGIN)
The entries DT_RPATH
(deprecated) and/or DT_RUNPATH
influence where the dynamic loader searches for dependencies. Rough order:
LD_LIBRARY_PATH
(ignored for setuid/sgid or otherwise "secure-execution" programs)DT_RPATH
(only ifDT_RUNPATH
absent)DT_RUNPATH
ld.so.cache
- default directories like
/lib64
,/usr/lib64
, etc.
$ORIGIN
can be used inside RPATH/RUNPATH to refer to the directory of the main object. From an attacker perspective this matters when you control the filesystem layout or environment. For hardened binaries (AT_SECURE) most environment variables are ignored by the loader.
- Inspect with:
readelf -d ./bin | egrep -i 'r(path|unpath)'
- Quick test:
LD_DEBUG=libs ./bin 2>&1 | grep -i find
(shows search path decisions)
Priv-esc tip: Prefer abusing writable RUNPATHs or misconfigured
$ORIGIN
-relative paths owned by you. LD_PRELOAD/LD_AUDIT are ignored in secure-execution (setuid) contexts.
Relocations
The loader also must relocate dependencies after having loaded them. These relocations are indicated in the relocation table in formats REL or RELA and the number of relocations is given in the dynamic sections RELSZ or RELASZ.
readelf -r lnstat
Relocation section '.rela.dyn' at offset 0xaa0 contains 23 entries:
Offset Info Type Sym. Value Sym. Name + Addend
00000001fc48 000000000403 R_AARCH64_RELATIV 1d10
00000001fc50 000000000403 R_AARCH64_RELATIV 1cc0
00000001fff0 000000000403 R_AARCH64_RELATIV 1340
000000020008 000000000403 R_AARCH64_RELATIV 20008
000000020010 000000000403 R_AARCH64_RELATIV 3330
000000020030 000000000403 R_AARCH64_RELATIV 3338
000000020050 000000000403 R_AARCH64_RELATIV 3340
000000020070 000000000403 R_AARCH64_RELATIV 3348
000000020090 000000000403 R_AARCH64_RELATIV 3350
0000000200b0 000000000403 R_AARCH64_RELATIV 3358
0000000200d0 000000000403 R_AARCH64_RELATIV 3360
0000000200f0 000000000403 R_AARCH64_RELATIV 3370
000000020110 000000000403 R_AARCH64_RELATIV 3378
000000020130 000000000403 R_AARCH64_RELATIV 3380
000000020150 000000000403 R_AARCH64_RELATIV 3388
00000001ffb8 000a00000401 R_AARCH64_GLOB_DA 0000000000000000 _ITM_deregisterTM[...] + 0
00000001ffc0 000b00000401 R_AARCH64_GLOB_DA 0000000000000000 __cxa_finalize@GLIBC_2.17 + 0
00000001ffc8 000f00000401 R_AARCH64_GLOB_DA 0000000000000000 stderr@GLIBC_2.17 + 0
00000001ffd0 001000000401 R_AARCH64_GLOB_DA 0000000000000000 optarg@GLIBC_2.17 + 0
00000001ffd8 001400000401 R_AARCH64_GLOB_DA 0000000000000000 stdout@GLIBC_2.17 + 0
00000001ffe0 001e00000401 R_AARCH64_GLOB_DA 0000000000000000 __gmon_start__ + 0
00000001ffe8 001f00000401 R_AARCH64_GLOB_DA 0000000000000000 __stack_chk_guard@GLIBC_2.17 + 0
00000001fff8 002e00000401 R_AARCH64_GLOB_DA 0000000000000000 _ITM_registerTMCl[...] + 0
Relocation section '.rela.plt' at offset 0xcc8 contains 40 entries:
Offset Info Type Sym. Value Sym. Name + Addend
00000001fe70 000300000402 R_AARCH64_JUMP_SL 0000000000000000 strtok@GLIBC_2.17 + 0
00000001fe78 000400000402 R_AARCH64_JUMP_SL 0000000000000000 strtoul@GLIBC_2.17 + 0
00000001fe80 000500000402 R_AARCH64_JUMP_SL 0000000000000000 strlen@GLIBC_2.17 + 0
00000001fe88 000600000402 R_AARCH64_JUMP_SL 0000000000000000 fputs@GLIBC_2.17 + 0
00000001fe90 000700000402 R_AARCH64_JUMP_SL 0000000000000000 exit@GLIBC_2.17 + 0
00000001fe98 000800000402 R_AARCH64_JUMP_SL 0000000000000000 __libc_start_main@GLIBC_2.34 + 0
00000001fea0 000900000402 R_AARCH64_JUMP_SL 0000000000000000 perror@GLIBC_2.17 + 0
00000001fea8 000b00000402 R_AARCH64_JUMP_SL 0000000000000000 __cxa_finalize@GLIBC_2.17 + 0
00000001feb0 000c00000402 R_AARCH64_JUMP_SL 0000000000000000 putc@GLIBC_2.17 + 0
00000001fec0 000e00000402 R_AARCH64_JUMP_SL 0000000000000000 fputc@GLIBC_2.17 + 0
00000001fec8 001100000402 R_AARCH64_JUMP_SL 0000000000000000 snprintf@GLIBC_2.17 + 0
00000001fed0 001200000402 R_AARCH64_JUMP_SL 0000000000000000 __snprintf_chk@GLIBC_2.17 + 0
00000001fed8 001300000402 R_AARCH64_JUMP_SL 0000000000000000 malloc@GLIBC_2.17 + 0
00000001fee0 001500000402 R_AARCH64_JUMP_SL 0000000000000000 gettimeofday@GLIBC_2.17 + 0
00000001fee8 001600000402 R_AARCH64_JUMP_SL 0000000000000000 sleep@GLIBC_2.17 + 0
00000001fef0 001700000402 R_AARCH64_JUMP_SL 0000000000000000 __vfprintf_chk@GLIBC_2.17 + 0
00000001fef8 001800000402 R_AARCH64_JUMP_SL 0000000000000000 calloc@GLIBC_2.17 + 0
00000001ff00 001900000402 R_AARCH64_JUMP_SL 0000000000000000 rewind@GLIBC_2.17 + 0
00000001ff08 001a00000402 R_AARCH64_JUMP_SL 0000000000000000 strdup@GLIBC_2.17 + 0
00000001ff10 001b00000402 R_AARCH64_JUMP_SL 0000000000000000 closedir@GLIBC_2.17 + 0
00000001ff18 001c00000402 R_AARCH64_JUMP_SL 0000000000000000 __stack_chk_fail@GLIBC_2.17 + 0
00000001ff20 001d00000402 R_AARCH64_JUMP_SL 0000000000000000 strrchr@GLIBC_2.17 + 0
00000001ff28 001e00000402 R_AARCH64_JUMP_SL 0000000000000000 __gmon_start__ + 0
00000001ff30 002000000402 R_AARCH64_JUMP_SL 0000000000000000 abort@GLIBC_2.17 + 0
00000001ff38 002100000402 R_AARCH64_JUMP_SL 0000000000000000 feof@GLIBC_2.17 + 0
00000001ff40 002200000402 R_AARCH64_JUMP_SL 0000000000000000 getopt_long@GLIBC_2.17 + 0
00000001ff48 002300000402 R_AARCH64_JUMP_SL 0000000000000000 __fprintf_chk@GLIBC_2.17 + 0
00000001ff50 002400000402 R_AARCH64_JUMP_SL 0000000000000000 strcmp@GLIBC_2.17 + 0
00000001ff58 002500000402 R_AARCH64_JUMP_SL 0000000000000000 free@GLIBC_2.17 + 0
00000001ff60 002600000402 R_AARCH64_JUMP_SL 0000000000000000 readdir64@GLIBC_2.17 + 0
00000001ff68 002700000402 R_AARCH64_JUMP_SL 0000000000000000 strndup@GLIBC_2.17 + 0
00000001ff70 002800000402 R_AARCH64_JUMP_SL 0000000000000000 strchr@GLIBC_2.17 + 0
00000001ff78 002900000402 R_AARCH64_JUMP_SL 0000000000000000 fwrite@GLIBC_2.17 + 0
00000001ff80 002a00000402 R_AARCH64_JUMP_SL 0000000000000000 fflush@GLIBC_2.17 + 0
00000001ff88 002b00000402 R_AARCH64_JUMP_SL 0000000000000000 fopen64@GLIBC_2.17 + 0
00000001ff90 002c00000402 R_AARCH64_JUMP_SL 0000000000000000 __isoc99_sscanf@GLIBC_2.17 + 0
00000001ff98 002d00000402 R_AARCH64_JUMP_SL 0000000000000000 strncpy@GLIBC_2.17 + 0
00000001ffa0 002f00000402 R_AARCH64_JUMP_SL 0000000000000000 __assert_fail@GLIBC_2.17 + 0
00000001ffa8 003000000402 R_AARCH64_JUMP_SL 0000000000000000 fgets@GLIBC_2.17 + 0
Static Relocations
Ikiwa programu imepakuliwa mahali tofauti na anwani inayopendelea (kawaida 0x400000) kwa sababu anwani hiyo tayari inatumika au kwa sababu ya ASLR au sababu nyingine yoyote, uhamasishaji wa statiki unarekebisha viashiria ambavyo vilikuwa na thamani zikitarajia binary kupakuliwa katika anwani inayopendelea.
Kwa mfano, sehemu yoyote ya aina R_AARCH64_RELATIV
inapaswa kuwa na anwani iliyorekebishwa kwa bias ya uhamasishaji pamoja na thamani ya kuongeza.
Dynamic Relocations and GOT
Uhamasishaji unaweza pia kurejelea alama ya nje (kama kazi kutoka kwa utegemezi). Kama kazi malloc kutoka libC. Kisha, mpakuwaji anapopakua libC katika anwani akichunguza mahali ambapo kazi malloc imepakuliwa, itaandika anwani hii katika jedwali la GOT (Global Offset Table) (iliyotajwa katika jedwali la uhamasishaji) ambapo anwani ya malloc inapaswa kufafanuliwa.
Procedure Linkage Table
Sehemu ya PLT inaruhusu kufanya uhusiano wa polepole, ambayo inamaanisha kwamba ufumbuzi wa mahali pa kazi utafanywa mara ya kwanza inapotumika.
Hivyo wakati programu inaita malloc, kwa kweli inaita mahali husika pa malloc
katika PLT (malloc@plt
). Mara ya kwanza inapotumika inapata anwani ya malloc
na kuihifadhi ili wakati malloc
inaitwa tena, anwani hiyo inatumika badala ya msimbo wa PLT.
Modern linking behaviors that impact exploitation
-z now
(Full RELRO) inazima uhusiano wa polepole; entries za PLT bado zipo lakini GOT/PLT imepangwa kuwa ya kusoma tu, hivyo mbinu kama GOT overwrite na ret2dlresolve hazitafanya kazi dhidi ya binary kuu (maktaba zinaweza bado kuwa sehemu RELRO). Tazama:
-
-fno-plt inafanya kompyuta kuita kazi za nje kupitia GOT entry moja kwa moja badala ya kupitia PLT stub. Utapata mfululizo wa wito kama mov reg, [got]; call reg badala ya call func@plt. Hii inapunguza matumizi mabaya ya utekelezaji wa dhana na kubadilisha kidogo uwindaji wa ROP gadget kuzunguka PLT stubs.
-
PIE vs static-PIE: PIE (ET_DYN na INTERP) inahitaji mpakuwaji wa dynamic na inasaidia mashine ya kawaida ya PLT/GOT. Static-PIE (ET_DYN bila INTERP) ina uhamasishaji unaotumika na mpakuwaji wa kernel na hakuna ld.so; tarajia hakuna ufumbuzi wa PLT wakati wa kutekeleza.
Ikiwa GOT/PLT si chaguo, hamasisha kwenye viashiria vingine vya msimbo vinavyoweza kuandikwa au tumia ROP/SROP ya kawaida ndani ya libc.
Program Initialization
Baada ya programu kupakuliwa ni wakati wa kuikimbia. Hata hivyo, msimbo wa kwanza unaotekelezwa sio kila wakati kazi ya main
. Hii ni kwa sababu kwa mfano katika C++ ikiwa kigezo cha kimataifa ni kitu cha darasa, kitu hiki lazima kiwe kimeanzishwa kabla ya main kuendesha, kama katika:
#include <stdio.h>
// g++ autoinit.cpp -o autoinit
class AutoInit {
public:
AutoInit() {
printf("Hello AutoInit!\n");
}
~AutoInit() {
printf("Goodbye AutoInit!\n");
}
};
AutoInit autoInit;
int main() {
printf("Main\n");
return 0;
}
Kumbuka kwamba hizi variables za kimataifa ziko katika .data
au .bss
lakini katika orodha __CTOR_LIST__
na __DTOR_LIST__
vitu vya kuanzisha na kuharibu vinahifadhiwa ili kufuatilia.
Kutoka kwa msimbo wa C inawezekana kupata matokeo sawa kwa kutumia nyongeza za GNU:
__attributte__((constructor)) //Add a constructor to execute before
__attributte__((destructor)) //Add to the destructor list
From a compiler perspective, to execute these actions before and after the main
function is executed, it's possible to create a init
function and a fini
function which would be referenced in the dynamic section as INIT
and FIN
. and are placed in the init
and fini
sections of the ELF.
The other option, as mentioned, is to reference the lists __CTOR_LIST__
and __DTOR_LIST__
in the INIT_ARRAY
and FINI_ARRAY
entries in the dynamic section and the length of these are indicated by INIT_ARRAYSZ
and FINI_ARRAYSZ
. Each entry is a function pointer that will be called without arguments.
Moreover, it's also possible to have a PREINIT_ARRAY
with pointers that will be executed before the INIT_ARRAY
pointers.
Ujumbe wa Ukatili
-
Chini ya Partial RELRO hizi arrays zinaishi katika kurasa ambazo bado zinaweza kuandikwa kabla
ld.so
haijabadilishaPT_GNU_RELRO
kuwa isiyoandikwa. Ikiwa unapata kuandika bila mpangilio mapema vya kutosha au unaweza kulenga arrays zinazoweza kuandikwa za maktaba, unaweza kuingilia mchakato wa udhibiti kwa kuandika tena kipengee na kazi unayochagua. Chini ya Full RELRO zinakuwa zisizoandikwa wakati wa utendaji. -
Kwa matumizi ya lazy binding ya linker ya dynamic kutatua alama zisizo za kawaida wakati wa utendaji, angalia ukurasa maalum:
Agizo la Uanzishaji
- Programu inapoingizwa kwenye kumbukumbu, mabadiliko ya kimataifa ya statiki yanaanzishwa katika
.data
na yasiyoanzishwa yanawekwa sifuri katika.bss
. - Mahitaji yote ya programu au maktaba yana anzishwa na kuunganishwa kwa dynamic kunatekelezwa.
PREINIT_ARRAY
kazi zinafanywa.INIT_ARRAY
kazi zinafanywa.- Ikiwa kuna kipengee cha
INIT
kinaitwa. - Ikiwa ni maktaba, dlopen inamalizika hapa, ikiwa ni programu, ni wakati wa kuita nukta halisi ya kuingia (
main
function).
Hifadhi ya Mitaa ya Thread (TLS)
Zimefafanuliwa kwa kutumia neno muhimu __thread_local
katika C++ au nyongeza ya GNU __thread
.
Kila thread itahifadhi eneo la kipekee kwa ajili ya variable hii hivyo ni thread pekee inayoweza kufikia variable yake.
Wakati hii inatumika sehemu .tdata
na .tbss
zinatumika katika ELF. Ambazo ni kama .data
(iliyowekwa) na .bss
(siyo iliyowekwa) lakini kwa TLS.
Kila variable itakuwa na kipengee katika kichwa cha TLS kinachoelezea ukubwa na offset ya TLS, ambayo ni offset itakayotumia katika eneo la data la ndani la thread.
The __TLS_MODULE_BASE
is a symbol used to refer to the base address of the thread local storage and points to the area in memory that contains all the thread-local data of a module.
Vektori ya Msaidizi (auxv) na vDSO
Kernel ya Linux inapita vektori ya msaidizi kwa michakato inayoelezea anwani na bendera muhimu kwa wakati wa utendaji:
AT_RANDOM
: inaelekeza kwa bytes 16 za nasibu zinazotumiwa na glibc kwa stack canary na mbegu nyingine za PRNG.AT_SYSINFO_EHDR
: anwani ya msingi ya ramani ya vDSO (inasaidia kupata__kernel_*
syscalls na gadgets).AT_EXECFN
,AT_BASE
,AT_PAGESZ
, n.k.
Kama mshambuliaji, ikiwa unaweza kusoma kumbukumbu au faili chini ya /proc
, mara nyingi unaweza kuvuja hizi bila kuvuja taarifa katika mchakato wa lengo:
# Show the auxv of a running process
cat /proc/$(pidof target)/auxv | xxd
# From your own process (helper snippet)
#include <sys/auxv.h>
#include <stdio.h>
int main(){
printf("AT_RANDOM=%p\n", (void*)getauxval(AT_RANDOM));
printf("AT_SYSINFO_EHDR=%p\n", (void*)getauxval(AT_SYSINFO_EHDR));
}
Kuvuja AT_RANDOM
kunakupa thamani ya canary ikiwa unaweza kurejelea kiashiria hicho; AT_SYSINFO_EHDR
inakupa msingi wa vDSO ili kutafuta gadgets au kuita syscalls haraka moja kwa moja.
References
- ld.so(8) β Dynamic Loader search order, RPATH/RUNPATH, secure-execution rules (AT_SECURE): https://man7.org/linux/man-pages/man8/ld.so.8.html
- getauxval(3) β Auxiliary vector and AT_* constants: https://man7.org/linux/man-pages/man3/getauxval.3.html
tip
Jifunze na fanya mazoezi ya AWS Hacking:HackTricks Training AWS Red Team Expert (ARTE)
Jifunze na fanya mazoezi ya GCP Hacking: HackTricks Training GCP Red Team Expert (GRTE)
Jifunze na fanya mazoezi ya Azure Hacking:
HackTricks Training Azure Red Team Expert (AzRTE)
Support HackTricks
- Angalia mpango wa usajili!
- Jiunge na π¬ kikundi cha Discord au kikundi cha telegram au tufuatilie kwenye Twitter π¦ @hacktricks_live.
- Shiriki mbinu za hacking kwa kuwasilisha PRs kwa HackTricks na HackTricks Cloud repos za github.