malloc & sysmalloc
Reading time: 35 minutes
tip
Impara e pratica l'Hacking AWS:HackTricks Training AWS Red Team Expert (ARTE)
Impara e pratica l'Hacking GCP: HackTricks Training GCP Red Team Expert (GRTE)
Supporta HackTricks
- Controlla i piani di abbonamento!
- Unisciti al 💬 gruppo Discord o al gruppo telegram o seguici su Twitter 🐦 @hacktricks_live.
- Condividi trucchi di hacking inviando PR ai HackTricks e HackTricks Cloud repos di github.
Riepilogo dell'Ordine di Allocazione
(Nessun controllo è spiegato in questo riepilogo e alcuni casi sono stati omessi per brevità)
__libc_malloc
cerca di ottenere un chunk dal tcache, se non riesce chiama_int_malloc
_int_malloc
:- Cerca di generare l'arena se non ce n'è una
- Se c'è un chunk di fast bin della dimensione corretta, usalo
- Riempire il tcache con altri chunk veloci
- Se c'è un chunk di small bin della dimensione corretta, usalo
- Riempire il tcache con altri chunk di quella dimensione
- Se la dimensione richiesta non è per small bins, consolidare il fast bin in unsorted bin
- Controlla l'unsorted bin, usa il primo chunk con spazio sufficiente
- Se il chunk trovato è più grande, dividilo per restituire una parte e aggiungere il resto all'unsorted bin
- Se un chunk è della stessa dimensione di quella richiesta, usalo per riempire il tcache invece di restituirlo (fino a quando il tcache è pieno, poi restituisci il successivo)
- Per ogni chunk di dimensione più piccola controllato, mettilo nel suo rispettivo small o large bin
- Controlla il large bin nell'indice della dimensione richiesta
- Inizia a cercare dal primo chunk che è più grande della dimensione richiesta, se ne trovi uno restituiscilo e aggiungi i resti al small bin
- Controlla i large bins dagli indici successivi fino alla fine
- Dal prossimo indice più grande controlla per qualsiasi chunk, dividi il primo chunk trovato per usarlo per la dimensione richiesta e aggiungi il resto all'unsorted bin
- Se non viene trovato nulla nei bins precedenti, prendi un chunk dal top chunk
- Se il top chunk non era abbastanza grande, ingrandiscilo con
sysmalloc
__libc_malloc
La funzione malloc
chiama effettivamente __libc_malloc
. Questa funzione controllerà il tcache per vedere se c'è un chunk disponibile della dimensione desiderata. Se c'è, lo utilizzerà e se non c'è controllerà se è un singolo thread e in tal caso chiamerà _int_malloc
nell'arena principale, e se non lo è chiamerà _int_malloc
nell'arena del thread.
__libc_malloc codice
// From https://github.com/bminor/glibc/blob/master/malloc/malloc.c
#if IS_IN (libc)
void *
__libc_malloc (size_t bytes)
{
mstate ar_ptr;
void *victim;
_Static_assert (PTRDIFF_MAX <= SIZE_MAX / 2,
"PTRDIFF_MAX is not more than half of SIZE_MAX");
if (!__malloc_initialized)
ptmalloc_init ();
#if USE_TCACHE
/* int_free also calls request2size, be careful to not pad twice. */
size_t tbytes = checked_request2size (bytes);
if (tbytes == 0)
{
__set_errno (ENOMEM);
return NULL;
}
size_t tc_idx = csize2tidx (tbytes);
MAYBE_INIT_TCACHE ();
DIAG_PUSH_NEEDS_COMMENT;
if (tc_idx < mp_.tcache_bins
&& tcache != NULL
&& tcache->counts[tc_idx] > 0)
{
victim = tcache_get (tc_idx);
return tag_new_usable (victim);
}
DIAG_POP_NEEDS_COMMENT;
#endif
if (SINGLE_THREAD_P)
{
victim = tag_new_usable (_int_malloc (&main_arena, bytes));
assert (!victim || chunk_is_mmapped (mem2chunk (victim)) ||
&main_arena == arena_for_chunk (mem2chunk (victim)));
return victim;
}
arena_get (ar_ptr, bytes);
victim = _int_malloc (ar_ptr, bytes);
/* Retry with another arena only if we were able to find a usable arena
before. */
if (!victim && ar_ptr != NULL)
{
LIBC_PROBE (memory_malloc_retry, 1, bytes);
ar_ptr = arena_get_retry (ar_ptr, bytes);
victim = _int_malloc (ar_ptr, bytes);
}
if (ar_ptr != NULL)
__libc_lock_unlock (ar_ptr->mutex);
victim = tag_new_usable (victim);
assert (!victim || chunk_is_mmapped (mem2chunk (victim)) ||
ar_ptr == arena_for_chunk (mem2chunk (victim)));
return victim;
}
Nota come etichetterà sempre il puntatore restituito con tag_new_usable
, dal codice:
void *tag_new_usable (void *ptr)
Allocate a new random color and use it to color the user region of
a chunk; this may include data from the subsequent chunk's header
if tagging is sufficiently fine grained. Returns PTR suitably
recolored for accessing the memory there.
_int_malloc
Questa è la funzione che alloca memoria utilizzando gli altri bin e il top chunk.
- Inizio
Inizia definendo alcune variabili e ottenendo la dimensione reale che lo spazio di memoria richiesto deve avere:
_int_malloc inizio
// From https://github.com/bminor/glibc/blob/f942a732d37a96217ef828116ebe64a644db18d7/malloc/malloc.c#L3847
static void *
_int_malloc (mstate av, size_t bytes)
{
INTERNAL_SIZE_T nb; /* normalized request size */
unsigned int idx; /* associated bin index */
mbinptr bin; /* associated bin */
mchunkptr victim; /* inspected/selected chunk */
INTERNAL_SIZE_T size; /* its size */
int victim_index; /* its bin index */
mchunkptr remainder; /* remainder from a split */
unsigned long remainder_size; /* its size */
unsigned int block; /* bit map traverser */
unsigned int bit; /* bit map traverser */
unsigned int map; /* current word of binmap */
mchunkptr fwd; /* misc temp for linking */
mchunkptr bck; /* misc temp for linking */
#if USE_TCACHE
size_t tcache_unsorted_count; /* count of unsorted chunks processed */
#endif
/*
Convert request size to internal form by adding SIZE_SZ bytes
overhead plus possibly more to obtain necessary alignment and/or
to obtain a size of at least MINSIZE, the smallest allocatable
size. Also, checked_request2size returns false for request sizes
that are so large that they wrap around zero when padded and
aligned.
*/
nb = checked_request2size (bytes);
if (nb == 0)
{
__set_errno (ENOMEM);
return NULL;
}
Arena
Nel caso improbabile in cui non ci siano arene utilizzabili, utilizza sysmalloc
per ottenere un chunk da mmap
:
_int_malloc non arena
// From https://github.com/bminor/glibc/blob/f942a732d37a96217ef828116ebe64a644db18d7/malloc/malloc.c#L3885C3-L3893C6
/* There are no usable arenas. Fall back to sysmalloc to get a chunk from
mmap. */
if (__glibc_unlikely (av == NULL))
{
void *p = sysmalloc (nb, av);
if (p != NULL)
alloc_perturb (p, bytes);
return p;
}
Fast Bin
Se la dimensione necessaria è all'interno delle dimensioni dei Fast Bins, prova a utilizzare un chunk dal fast bin. Fondamentalmente, in base alla dimensione, troverà l'indice del fast bin dove dovrebbero trovarsi i chunk validi e, se presenti, restituirà uno di essi.
Inoltre, se tcache è abilitato, riempirà il tcache bin di quella dimensione con i fast bins.
Durante l'esecuzione di queste azioni, vengono eseguiti alcuni controlli di sicurezza:
- Se il chunk è disallineato:
malloc(): unaligned fastbin chunk detected 2
- Se il chunk successivo è disallineato:
malloc(): unaligned fastbin chunk detected
- Se il chunk restituito ha una dimensione che non è corretta a causa del suo indice nel fast bin:
malloc(): memory corruption (fast)
- Se un chunk utilizzato per riempire il tcache è disallineato:
malloc(): unaligned fastbin chunk detected 3
_int_malloc fast bin
// From https://github.com/bminor/glibc/blob/f942a732d37a96217ef828116ebe64a644db18d7/malloc/malloc.c#L3895C3-L3967C6
/*
If the size qualifies as a fastbin, first check corresponding bin.
This code is safe to execute even if av is not yet initialized, so we
can try it without checking, which saves some time on this fast path.
*/
#define REMOVE_FB(fb, victim, pp) \
do \
{ \
victim = pp; \
if (victim == NULL) \
break; \
pp = REVEAL_PTR (victim->fd); \
if (__glibc_unlikely (pp != NULL && misaligned_chunk (pp))) \
malloc_printerr ("malloc(): unaligned fastbin chunk detected"); \
} \
while ((pp = catomic_compare_and_exchange_val_acq (fb, pp, victim)) \
!= victim); \
if ((unsigned long) (nb) <= (unsigned long) (get_max_fast ()))
{
idx = fastbin_index (nb);
mfastbinptr *fb = &fastbin (av, idx);
mchunkptr pp;
victim = *fb;
if (victim != NULL)
{
if (__glibc_unlikely (misaligned_chunk (victim)))
malloc_printerr ("malloc(): unaligned fastbin chunk detected 2");
if (SINGLE_THREAD_P)
*fb = REVEAL_PTR (victim->fd);
else
REMOVE_FB (fb, pp, victim);
if (__glibc_likely (victim != NULL))
{
size_t victim_idx = fastbin_index (chunksize (victim));
if (__builtin_expect (victim_idx != idx, 0))
malloc_printerr ("malloc(): memory corruption (fast)");
check_remalloced_chunk (av, victim, nb);
#if USE_TCACHE
/* While we're here, if we see other chunks of the same size,
stash them in the tcache. */
size_t tc_idx = csize2tidx (nb);
if (tcache != NULL && tc_idx < mp_.tcache_bins)
{
mchunkptr tc_victim;
/* While bin not empty and tcache not full, copy chunks. */
while (tcache->counts[tc_idx] < mp_.tcache_count
&& (tc_victim = *fb) != NULL)
{
if (__glibc_unlikely (misaligned_chunk (tc_victim)))
malloc_printerr ("malloc(): unaligned fastbin chunk detected 3");
if (SINGLE_THREAD_P)
*fb = REVEAL_PTR (tc_victim->fd);
else
{
REMOVE_FB (fb, pp, tc_victim);
if (__glibc_unlikely (tc_victim == NULL))
break;
}
tcache_put (tc_victim, tc_idx);
}
}
#endif
void *p = chunk2mem (victim);
alloc_perturb (p, bytes);
return p;
}
}
}
Small Bin
Come indicato in un commento, i piccoli bin contengono una dimensione per indice, quindi controllare se un chunk valido è disponibile è molto veloce, quindi dopo i fast bin, si controllano i piccoli bin.
Il primo controllo è per scoprire se la dimensione richiesta potrebbe trovarsi all'interno di un piccolo bin. In tal caso, ottenere il indice corrispondente all'interno del smallbin e vedere se c'è qualche chunk disponibile.
Poi, viene eseguito un controllo di sicurezza verificando:
- se
victim->bk->fd = victim
. Per vedere che entrambi i chunk siano correttamente collegati.
In tal caso, il chunk ottiene il bit inuse
, la lista doppiamente collegata viene sistemata in modo che questo chunk scompaia da essa (poiché verrà utilizzato), e il bit non principale dell'arena viene impostato se necessario.
Infine, riempi l'indice tcache della dimensione richiesta con altri chunk all'interno del piccolo bin (se presenti).
_int_malloc small bin
// From https://github.com/bminor/glibc/blob/f942a732d37a96217ef828116ebe64a644db18d7/malloc/malloc.c#L3895C3-L3967C6
/*
If a small request, check regular bin. Since these "smallbins"
hold one size each, no searching within bins is necessary.
(For a large request, we need to wait until unsorted chunks are
processed to find best fit. But for small ones, fits are exact
anyway, so we can check now, which is faster.)
*/
if (in_smallbin_range (nb))
{
idx = smallbin_index (nb);
bin = bin_at (av, idx);
if ((victim = last (bin)) != bin)
{
bck = victim->bk;
if (__glibc_unlikely (bck->fd != victim))
malloc_printerr ("malloc(): smallbin double linked list corrupted");
set_inuse_bit_at_offset (victim, nb);
bin->bk = bck;
bck->fd = bin;
if (av != &main_arena)
set_non_main_arena (victim);
check_malloced_chunk (av, victim, nb);
#if USE_TCACHE
/* While we're here, if we see other chunks of the same size,
stash them in the tcache. */
size_t tc_idx = csize2tidx (nb);
if (tcache != NULL && tc_idx < mp_.tcache_bins)
{
mchunkptr tc_victim;
/* While bin not empty and tcache not full, copy chunks over. */
while (tcache->counts[tc_idx] < mp_.tcache_count
&& (tc_victim = last (bin)) != bin)
{
if (tc_victim != 0)
{
bck = tc_victim->bk;
set_inuse_bit_at_offset (tc_victim, nb);
if (av != &main_arena)
set_non_main_arena (tc_victim);
bin->bk = bck;
bck->fd = bin;
tcache_put (tc_victim, tc_idx);
}
}
}
#endif
void *p = chunk2mem (victim);
alloc_perturb (p, bytes);
return p;
}
}
malloc_consolidate
Se non era un piccolo chunk, è un grande chunk, e in questo caso malloc_consolidate
viene chiamato per evitare la frammentazione della memoria.
chiamata a malloc_consolidate
/*
If this is a large request, consolidate fastbins before continuing.
While it might look excessive to kill all fastbins before
even seeing if there is space available, this avoids
fragmentation problems normally associated with fastbins.
Also, in practice, programs tend to have runs of either small or
large requests, but less often mixtures, so consolidation is not
invoked all that often in most programs. And the programs that
it is called frequently in otherwise tend to fragment.
*/
else
{
idx = largebin_index (nb);
if (atomic_load_relaxed (&av->have_fastchunks))
malloc_consolidate (av);
}
La funzione malloc consolidate rimuove fondamentalmente i chunk dal fast bin e li colloca nell'unsorted bin. Dopo il prossimo malloc, questi chunk saranno organizzati nei rispettivi small/fast bins.
Nota che se durante la rimozione di questi chunk, vengono trovati chunk precedenti o successivi che non sono in uso, saranno unlinked e uniti prima di collocare il chunk finale nell'unsorted bin.
Per ogni chunk del fast bin vengono eseguiti un paio di controlli di sicurezza:
- Se il chunk è disallineato attiva:
malloc_consolidate(): unaligned fastbin chunk detected
- Se il chunk ha una dimensione diversa da quella che dovrebbe avere a causa dell'indice in cui si trova:
malloc_consolidate(): invalid chunk size
- Se il chunk precedente non è in uso e il chunk precedente ha una dimensione diversa da quella indicata da
prev_chunk
:corrupted size vs. prev_size in fastbins
funzione malloc_consolidate
// https://github.com/bminor/glibc/blob/f942a732d37a96217ef828116ebe64a644db18d7/malloc/malloc.c#L4810C1-L4905C2
static void malloc_consolidate(mstate av)
{
mfastbinptr* fb; /* current fastbin being consolidated */
mfastbinptr* maxfb; /* last fastbin (for loop control) */
mchunkptr p; /* current chunk being consolidated */
mchunkptr nextp; /* next chunk to consolidate */
mchunkptr unsorted_bin; /* bin header */
mchunkptr first_unsorted; /* chunk to link to */
/* These have same use as in free() */
mchunkptr nextchunk;
INTERNAL_SIZE_T size;
INTERNAL_SIZE_T nextsize;
INTERNAL_SIZE_T prevsize;
int nextinuse;
atomic_store_relaxed (&av->have_fastchunks, false);
unsorted_bin = unsorted_chunks(av);
/*
Remove each chunk from fast bin and consolidate it, placing it
then in unsorted bin. Among other reasons for doing this,
placing in unsorted bin avoids needing to calculate actual bins
until malloc is sure that chunks aren't immediately going to be
reused anyway.
*/
maxfb = &fastbin (av, NFASTBINS - 1);
fb = &fastbin (av, 0);
do {
p = atomic_exchange_acquire (fb, NULL);
if (p != 0) {
do {
{
if (__glibc_unlikely (misaligned_chunk (p)))
malloc_printerr ("malloc_consolidate(): "
"unaligned fastbin chunk detected");
unsigned int idx = fastbin_index (chunksize (p));
if ((&fastbin (av, idx)) != fb)
malloc_printerr ("malloc_consolidate(): invalid chunk size");
}
check_inuse_chunk(av, p);
nextp = REVEAL_PTR (p->fd);
/* Slightly streamlined version of consolidation code in free() */
size = chunksize (p);
nextchunk = chunk_at_offset(p, size);
nextsize = chunksize(nextchunk);
if (!prev_inuse(p)) {
prevsize = prev_size (p);
size += prevsize;
p = chunk_at_offset(p, -((long) prevsize));
if (__glibc_unlikely (chunksize(p) != prevsize))
malloc_printerr ("corrupted size vs. prev_size in fastbins");
unlink_chunk (av, p);
}
if (nextchunk != av->top) {
nextinuse = inuse_bit_at_offset(nextchunk, nextsize);
if (!nextinuse) {
size += nextsize;
unlink_chunk (av, nextchunk);
} else
clear_inuse_bit_at_offset(nextchunk, 0);
first_unsorted = unsorted_bin->fd;
unsorted_bin->fd = p;
first_unsorted->bk = p;
if (!in_smallbin_range (size)) {
p->fd_nextsize = NULL;
p->bk_nextsize = NULL;
}
set_head(p, size | PREV_INUSE);
p->bk = unsorted_bin;
p->fd = first_unsorted;
set_foot(p, size);
}
else {
size += nextsize;
set_head(p, size | PREV_INUSE);
av->top = p;
}
} while ( (p = nextp) != 0);
}
} while (fb++ != maxfb);
}
Unsorted bin
È tempo di controllare l'unsorted bin per un potenziale chunk valido da utilizzare.
Start
Questo inizia con un grande ciclo for che attraverserà l'unsorted bin nella direzione bk
fino ad arrivare alla fine (la struttura arena) con while ((victim = unsorted_chunks (av)->bk) != unsorted_chunks (av))
Inoltre, vengono eseguiti alcuni controlli di sicurezza ogni volta che un nuovo chunk viene considerato:
- Se la dimensione del chunk è strana (troppo piccola o troppo grande):
malloc(): invalid size (unsorted)
- Se la dimensione del chunk successivo è strana (troppo piccola o troppo grande):
malloc(): invalid next size (unsorted)
- Se la dimensione precedente indicata dal chunk successivo differisce dalla dimensione del chunk:
malloc(): mismatching next->prev_size (unsorted)
- Se non
victim->bck->fd == victim
o nonvictim->fd == av
(arena):malloc(): unsorted double linked list corrupted
- Poiché stiamo sempre controllando l'ultimo, il suo
fd
dovrebbe sempre puntare alla struttura arena. - Se il chunk successivo non indica che il precedente è in uso:
malloc(): invalid next->prev_inuse (unsorted)
_int_malloc
unsorted bin start
/*
Process recently freed or remaindered chunks, taking one only if
it is exact fit, or, if this a small request, the chunk is remainder from
the most recent non-exact fit. Place other traversed chunks in
bins. Note that this step is the only place in any routine where
chunks are placed in bins.
The outer loop here is needed because we might not realize until
near the end of malloc that we should have consolidated, so must
do so and retry. This happens at most once, and only when we would
otherwise need to expand memory to service a "small" request.
*/
#if USE_TCACHE
INTERNAL_SIZE_T tcache_nb = 0;
size_t tc_idx = csize2tidx (nb);
if (tcache != NULL && tc_idx < mp_.tcache_bins)
tcache_nb = nb;
int return_cached = 0;
tcache_unsorted_count = 0;
#endif
for (;; )
{
int iters = 0;
while ((victim = unsorted_chunks (av)->bk) != unsorted_chunks (av))
{
bck = victim->bk;
size = chunksize (victim);
mchunkptr next = chunk_at_offset (victim, size);
if (__glibc_unlikely (size <= CHUNK_HDR_SZ)
|| __glibc_unlikely (size > av->system_mem))
malloc_printerr ("malloc(): invalid size (unsorted)");
if (__glibc_unlikely (chunksize_nomask (next) < CHUNK_HDR_SZ)
|| __glibc_unlikely (chunksize_nomask (next) > av->system_mem))
malloc_printerr ("malloc(): invalid next size (unsorted)");
if (__glibc_unlikely ((prev_size (next) & ~(SIZE_BITS)) != size))
malloc_printerr ("malloc(): mismatching next->prev_size (unsorted)");
if (__glibc_unlikely (bck->fd != victim)
|| __glibc_unlikely (victim->fd != unsorted_chunks (av)))
malloc_printerr ("malloc(): unsorted double linked list corrupted");
if (__glibc_unlikely (prev_inuse (next)))
malloc_printerr ("malloc(): invalid next->prev_inuse (unsorted)");
se in_smallbin_range
Se il chunk è più grande della dimensione richiesta, usalo e imposta il resto dello spazio del chunk nella lista non ordinata e aggiorna il last_remainder
con esso.
_int_malloc
bin non ordinato in_smallbin_range
// From https://github.com/bminor/glibc/blob/master/malloc/malloc.c#L4090C11-L4124C14
/*
If a small request, try to use last remainder if it is the
only chunk in unsorted bin. This helps promote locality for
runs of consecutive small requests. This is the only
exception to best-fit, and applies only when there is
no exact fit for a small chunk.
*/
if (in_smallbin_range (nb) &&
bck == unsorted_chunks (av) &&
victim == av->last_remainder &&
(unsigned long) (size) > (unsigned long) (nb + MINSIZE))
{
/* split and reattach remainder */
remainder_size = size - nb;
remainder = chunk_at_offset (victim, nb);
unsorted_chunks (av)->bk = unsorted_chunks (av)->fd = remainder;
av->last_remainder = remainder;
remainder->bk = remainder->fd = unsorted_chunks (av);
if (!in_smallbin_range (remainder_size))
{
remainder->fd_nextsize = NULL;
remainder->bk_nextsize = NULL;
}
set_head (victim, nb | PREV_INUSE |
(av != &main_arena ? NON_MAIN_ARENA : 0));
set_head (remainder, remainder_size | PREV_INUSE);
set_foot (remainder, remainder_size);
check_malloced_chunk (av, victim, nb);
void *p = chunk2mem (victim);
alloc_perturb (p, bytes);
return p;
}
Se questo è stato un successo, restituisci il chunk e finisce qui, altrimenti continua a eseguire la funzione...
se dimensione uguale
Continua a rimuovere il chunk dal bin, nel caso in cui la dimensione richiesta sia esattamente quella del chunk:
- Se il tcache non è pieno, aggiungilo al tcache e continua indicando che c'è un chunk tcache che potrebbe essere utilizzato
- Se il tcache è pieno, usalo semplicemente restituendolo
_int_malloc
bin non ordinato dimensione uguale
// From https://github.com/bminor/glibc/blob/master/malloc/malloc.c#L4126C11-L4157C14
/* remove from unsorted list */
unsorted_chunks (av)->bk = bck;
bck->fd = unsorted_chunks (av);
/* Take now instead of binning if exact fit */
if (size == nb)
{
set_inuse_bit_at_offset (victim, size);
if (av != &main_arena)
set_non_main_arena (victim);
#if USE_TCACHE
/* Fill cache first, return to user only if cache fills.
We may return one of these chunks later. */
if (tcache_nb > 0
&& tcache->counts[tc_idx] < mp_.tcache_count)
{
tcache_put (victim, tc_idx);
return_cached = 1;
continue;
}
else
{
#endif
check_malloced_chunk (av, victim, nb);
void *p = chunk2mem (victim);
alloc_perturb (p, bytes);
return p;
#if USE_TCACHE
}
#endif
}
Se il chunk non viene restituito o aggiunto a tcache, continua con il codice...
posizionare il chunk in un bin
Memorizza il chunk controllato nel small bin o nel large bin in base alla dimensione del chunk (mantenendo il large bin correttamente organizzato).
Vengono eseguiti controlli di sicurezza per assicurarsi che entrambe le liste collegate doppie del large bin siano corrotte:
- Se
fwd->bk_nextsize->fd_nextsize != fwd
:malloc(): largebin double linked list corrupted (nextsize)
- Se
fwd->bk->fd != fwd
:malloc(): largebin double linked list corrupted (bk)
_int_malloc
posizionare il chunk in un bin
/* place chunk in bin */
if (in_smallbin_range (size))
{
victim_index = smallbin_index (size);
bck = bin_at (av, victim_index);
fwd = bck->fd;
}
else
{
victim_index = largebin_index (size);
bck = bin_at (av, victim_index);
fwd = bck->fd;
/* maintain large bins in sorted order */
if (fwd != bck)
{
/* Or with inuse bit to speed comparisons */
size |= PREV_INUSE;
/* if smaller than smallest, bypass loop below */
assert (chunk_main_arena (bck->bk));
if ((unsigned long) (size)
< (unsigned long) chunksize_nomask (bck->bk))
{
fwd = bck;
bck = bck->bk;
victim->fd_nextsize = fwd->fd;
victim->bk_nextsize = fwd->fd->bk_nextsize;
fwd->fd->bk_nextsize = victim->bk_nextsize->fd_nextsize = victim;
}
else
{
assert (chunk_main_arena (fwd));
while ((unsigned long) size < chunksize_nomask (fwd))
{
fwd = fwd->fd_nextsize;
assert (chunk_main_arena (fwd));
}
if ((unsigned long) size
== (unsigned long) chunksize_nomask (fwd))
/* Always insert in the second position. */
fwd = fwd->fd;
else
{
victim->fd_nextsize = fwd;
victim->bk_nextsize = fwd->bk_nextsize;
if (__glibc_unlikely (fwd->bk_nextsize->fd_nextsize != fwd))
malloc_printerr ("malloc(): largebin double linked list corrupted (nextsize)");
fwd->bk_nextsize = victim;
victim->bk_nextsize->fd_nextsize = victim;
}
bck = fwd->bk;
if (bck->fd != fwd)
malloc_printerr ("malloc(): largebin double linked list corrupted (bk)");
}
}
else
victim->fd_nextsize = victim->bk_nextsize = victim;
}
mark_bin (av, victim_index);
victim->bk = bck;
victim->fd = fwd;
fwd->bk = victim;
bck->fd = victim;
Limiti di _int_malloc
A questo punto, se un chunk è stato memorizzato nel tcache che può essere utilizzato e il limite è stato raggiunto, basta restituire un chunk dal tcache.
Inoltre, se è stato raggiunto MAX_ITERS, esci dal ciclo e ottieni un chunk in un modo diverso (top chunk).
Se return_cached
è stato impostato, restituisci semplicemente un chunk dal tcache per evitare ricerche più ampie.
_int_malloc
limiti
// From https://github.com/bminor/glibc/blob/master/malloc/malloc.c#L4227C1-L4250C7
#if USE_TCACHE
/* If we've processed as many chunks as we're allowed while
filling the cache, return one of the cached ones. */
++tcache_unsorted_count;
if (return_cached
&& mp_.tcache_unsorted_limit > 0
&& tcache_unsorted_count > mp_.tcache_unsorted_limit)
{
return tcache_get (tc_idx);
}
#endif
#define MAX_ITERS 10000
if (++iters >= MAX_ITERS)
break;
}
#if USE_TCACHE
/* If all the small chunks we found ended up cached, return one now. */
if (return_cached)
{
return tcache_get (tc_idx);
}
#endif
Se i limiti non sono stati raggiunti, continua con il codice...
Large Bin (per indice)
Se la richiesta è grande (non nella small bin) e non abbiamo ancora restituito alcun chunk, ottieni l'indice della dimensione richiesta nella large bin, controlla se non è vuota o se il chunk più grande in questa bin è più grande della dimensione richiesta e in tal caso trova il chunk più piccolo che può essere utilizzato per la dimensione richiesta.
Se lo spazio rimanente dal chunk utilizzato può essere un nuovo chunk, aggiungilo alla unsorted bin e l'lsast_reminder viene aggiornato.
Viene effettuato un controllo di sicurezza quando si aggiunge il resto alla unsorted bin:
bck->fd-> bk != bck
:malloc(): corrupted unsorted chunks
_int_malloc
Large bin (per indice)
// From https://github.com/bminor/glibc/blob/master/malloc/malloc.c#L4252C7-L4317C10
/*
If a large request, scan through the chunks of current bin in
sorted order to find smallest that fits. Use the skip list for this.
*/
if (!in_smallbin_range (nb))
{
bin = bin_at (av, idx);
/* skip scan if empty or largest chunk is too small */
if ((victim = first (bin)) != bin
&& (unsigned long) chunksize_nomask (victim)
>= (unsigned long) (nb))
{
victim = victim->bk_nextsize;
while (((unsigned long) (size = chunksize (victim)) <
(unsigned long) (nb)))
victim = victim->bk_nextsize;
/* Avoid removing the first entry for a size so that the skip
list does not have to be rerouted. */
if (victim != last (bin)
&& chunksize_nomask (victim)
== chunksize_nomask (victim->fd))
victim = victim->fd;
remainder_size = size - nb;
unlink_chunk (av, victim);
/* Exhaust */
if (remainder_size < MINSIZE)
{
set_inuse_bit_at_offset (victim, size);
if (av != &main_arena)
set_non_main_arena (victim);
}
/* Split */
else
{
remainder = chunk_at_offset (victim, nb);
/* We cannot assume the unsorted list is empty and therefore
have to perform a complete insert here. */
bck = unsorted_chunks (av);
fwd = bck->fd;
if (__glibc_unlikely (fwd->bk != bck))
malloc_printerr ("malloc(): corrupted unsorted chunks");
last_re->bk = bck;
remainder->fd = fwd;
bck->fd = remainder;
fwd->bk = remainder;
if (!in_smallbin_range (remainder_size))
{
remainder->fd_nextsize = NULL;
remainder->bk_nextsize = NULL;
}
set_head (victim, nb | PREV_INUSE |
(av != &main_arena ? NON_MAIN_ARENA : 0));
set_head (remainder, remainder_size | PREV_INUSE);
set_foot (remainder, remainder_size);
}
check_malloced_chunk (av, victim, nb);
void *p = chunk2mem (victim);
alloc_perturb (p, bytes);
return p;
}
}
Se un chunk non è trovato adatto per questo, continua
Large Bin (prossimo più grande)
Se nel grande bin esatto non c'era alcun chunk che potesse essere utilizzato, inizia a scorrere tutti i successivi grandi bin (partendo dal successivo più grande) fino a trovarne uno (se presente).
Il resto del chunk diviso viene aggiunto nel bin non ordinato, last_reminder viene aggiornato e viene eseguito lo stesso controllo di sicurezza:
bck->fd-> bk != bck
:malloc(): corrupted unsorted chunks2
_int_malloc
Large bin (prossimo più grande)
// From https://github.com/bminor/glibc/blob/master/malloc/malloc.c#L4319C7-L4425C10
/*
Search for a chunk by scanning bins, starting with next largest
bin. This search is strictly by best-fit; i.e., the smallest
(with ties going to approximately the least recently used) chunk
that fits is selected.
The bitmap avoids needing to check that most blocks are nonempty.
The particular case of skipping all bins during warm-up phases
when no chunks have been returned yet is faster than it might look.
*/
++idx;
bin = bin_at (av, idx);
block = idx2block (idx);
map = av->binmap[block];
bit = idx2bit (idx);
for (;; )
{
/* Skip rest of block if there are no more set bits in this block. */
if (bit > map || bit == 0)
{
do
{
if (++block >= BINMAPSIZE) /* out of bins */
goto use_top;
}
while ((map = av->binmap[block]) == 0);
bin = bin_at (av, (block << BINMAPSHIFT));
bit = 1;
}
/* Advance to bin with set bit. There must be one. */
while ((bit & map) == 0)
{
bin = next_bin (bin);
bit <<= 1;
assert (bit != 0);
}
/* Inspect the bin. It is likely to be non-empty */
victim = last (bin);
/* If a false alarm (empty bin), clear the bit. */
if (victim == bin)
{
av->binmap[block] = map &= ~bit; /* Write through */
bin = next_bin (bin);
bit <<= 1;
}
else
{
size = chunksize (victim);
/* We know the first chunk in this bin is big enough to use. */
assert ((unsigned long) (size) >= (unsigned long) (nb));
remainder_size = size - nb;
/* unlink */
unlink_chunk (av, victim);
/* Exhaust */
if (remainder_size < MINSIZE)
{
set_inuse_bit_at_offset (victim, size);
if (av != &main_arena)
set_non_main_arena (victim);
}
/* Split */
else
{
remainder = chunk_at_offset (victim, nb);
/* We cannot assume the unsorted list is empty and therefore
have to perform a complete insert here. */
bck = unsorted_chunks (av);
fwd = bck->fd;
if (__glibc_unlikely (fwd->bk != bck))
malloc_printerr ("malloc(): corrupted unsorted chunks 2");
remainder->bk = bck;
remainder->fd = fwd;
bck->fd = remainder;
fwd->bk = remainder;
/* advertise as last remainder */
if (in_smallbin_range (nb))
av->last_remainder = remainder;
if (!in_smallbin_range (remainder_size))
{
remainder->fd_nextsize = NULL;
remainder->bk_nextsize = NULL;
}
set_head (victim, nb | PREV_INUSE |
(av != &main_arena ? NON_MAIN_ARENA : 0));
set_head (remainder, remainder_size | PREV_INUSE);
set_foot (remainder, remainder_size);
}
check_malloced_chunk (av, victim, nb);
void *p = chunk2mem (victim);
alloc_perturb (p, bytes);
return p;
}
}
Top Chunk
A questo punto, è il momento di ottenere un nuovo chunk dal Top chunk (se abbastanza grande).
Inizia con un controllo di sicurezza per assicurarsi che la dimensione del chunk non sia troppo grande (corrotto):
chunksize(av->top) > av->system_mem
:malloc(): corrupted top size
Poi, utilizzerà lo spazio del top chunk se è abbastanza grande per creare un chunk della dimensione richiesta.
Se non lo è, se ci sono fast chunks, consolidali e riprova.
Infine, se non c'è spazio sufficiente, usa sysmalloc
per allocare una dimensione adeguata.
_int_malloc
Top chunk
use_top:
/*
If large enough, split off the chunk bordering the end of memory
(held in av->top). Note that this is in accord with the best-fit
search rule. In effect, av->top is treated as larger (and thus
less well fitting) than any other available chunk since it can
be extended to be as large as necessary (up to system
limitations).
We require that av->top always exists (i.e., has size >=
MINSIZE) after initialization, so if it would otherwise be
exhausted by current request, it is replenished. (The main
reason for ensuring it exists is that we may need MINSIZE space
to put in fenceposts in sysmalloc.)
*/
victim = av->top;
size = chunksize (victim);
if (__glibc_unlikely (size > av->system_mem))
malloc_printerr ("malloc(): corrupted top size");
if ((unsigned long) (size) >= (unsigned long) (nb + MINSIZE))
{
remainder_size = size - nb;
remainder = chunk_at_offset (victim, nb);
av->top = remainder;
set_head (victim, nb | PREV_INUSE |
(av != &main_arena ? NON_MAIN_ARENA : 0));
set_head (remainder, remainder_size | PREV_INUSE);
check_malloced_chunk (av, victim, nb);
void *p = chunk2mem (victim);
alloc_perturb (p, bytes);
return p;
}
/* When we are using atomic ops to free fast chunks we can get
here for all block sizes. */
else if (atomic_load_relaxed (&av->have_fastchunks))
{
malloc_consolidate (av);
/* restore original bin index */
if (in_smallbin_range (nb))
idx = smallbin_index (nb);
else
idx = largebin_index (nb);
}
/*
Otherwise, relay to handle system-dependent cases
*/
else
{
void *p = sysmalloc (nb, av);
if (p != NULL)
alloc_perturb (p, bytes);
return p;
}
}
}
sysmalloc
sysmalloc inizio
Se arena è nullo o la dimensione richiesta è troppo grande (e ci sono mmaps rimasti permessi) usa sysmalloc_mmap
per allocare spazio e restituirlo.
sysmalloc inizio
// From https://github.com/bminor/glibc/blob/f942a732d37a96217ef828116ebe64a644db18d7/malloc/malloc.c#L2531
/*
sysmalloc handles malloc cases requiring more memory from the system.
On entry, it is assumed that av->top does not have enough
space to service request for nb bytes, thus requiring that av->top
be extended or replaced.
*/
static void *
sysmalloc (INTERNAL_SIZE_T nb, mstate av)
{
mchunkptr old_top; /* incoming value of av->top */
INTERNAL_SIZE_T old_size; /* its size */
char *old_end; /* its end address */
long size; /* arg to first MORECORE or mmap call */
char *brk; /* return value from MORECORE */
long correction; /* arg to 2nd MORECORE call */
char *snd_brk; /* 2nd return val */
INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of new space */
INTERNAL_SIZE_T end_misalign; /* partial page left at end of new space */
char *aligned_brk; /* aligned offset into brk */
mchunkptr p; /* the allocated/returned chunk */
mchunkptr remainder; /* remainder from allocation */
unsigned long remainder_size; /* its size */
size_t pagesize = GLRO (dl_pagesize);
bool tried_mmap = false;
/*
If have mmap, and the request size meets the mmap threshold, and
the system supports mmap, and there are few enough currently
allocated mmapped regions, try to directly map this request
rather than expanding top.
*/
if (av == NULL
|| ((unsigned long) (nb) >= (unsigned long) (mp_.mmap_threshold)
&& (mp_.n_mmaps < mp_.n_mmaps_max)))
{
char *mm;
if (mp_.hp_pagesize > 0 && nb >= mp_.hp_pagesize)
{
/* There is no need to issue the THP madvise call if Huge Pages are
used directly. */
mm = sysmalloc_mmap (nb, mp_.hp_pagesize, mp_.hp_flags, av);
if (mm != MAP_FAILED)
return mm;
}
mm = sysmalloc_mmap (nb, pagesize, 0, av);
if (mm != MAP_FAILED)
return mm;
tried_mmap = true;
}
/* There are no usable arenas and mmap also failed. */
if (av == NULL)
return 0;
sysmalloc controlli
Inizia ottenendo informazioni sul vecchio chunk top e controllando che alcune delle seguenti condizioni siano vere:
- La dimensione del vecchio heap è 0 (nuovo heap)
- La dimensione del precedente heap è maggiore di MINSIZE e il vecchio Top è in uso
- L'heap è allineato alla dimensione della pagina (0x1000 quindi i 12 bit inferiori devono essere 0)
Poi controlla anche che:
- La vecchia dimensione non ha spazio sufficiente per creare un chunk per la dimensione richiesta
sysmalloc controlli
/* Record incoming configuration of top */
old_top = av->top;
old_size = chunksize (old_top);
old_end = (char *) (chunk_at_offset (old_top, old_size));
brk = snd_brk = (char *) (MORECORE_FAILURE);
/*
If not the first time through, we require old_size to be
at least MINSIZE and to have prev_inuse set.
*/
assert ((old_top == initial_top (av) && old_size == 0) ||
((unsigned long) (old_size) >= MINSIZE &&
prev_inuse (old_top) &&
((unsigned long) old_end & (pagesize - 1)) == 0));
/* Precondition: not enough current space to satisfy nb request */
assert ((unsigned long) (old_size) < (unsigned long) (nb + MINSIZE));
sysmalloc non main arena
Inizialmente cercherà di estendere l'heap precedente per questo heap. Se non è possibile, cercherà di allocare un nuovo heap e aggiornare i puntatori per poterlo utilizzare.
Infine, se ciò non ha funzionato, proverà a chiamare sysmalloc_mmap
.
sysmalloc non main arena
if (av != &main_arena)
{
heap_info *old_heap, *heap;
size_t old_heap_size;
/* First try to extend the current heap. */
old_heap = heap_for_ptr (old_top);
old_heap_size = old_heap->size;
if ((long) (MINSIZE + nb - old_size) > 0
&& grow_heap (old_heap, MINSIZE + nb - old_size) == 0)
{
av->system_mem += old_heap->size - old_heap_size;
set_head (old_top, (((char *) old_heap + old_heap->size) - (char *) old_top)
| PREV_INUSE);
}
else if ((heap = new_heap (nb + (MINSIZE + sizeof (*heap)), mp_.top_pad)))
{
/* Use a newly allocated heap. */
heap->ar_ptr = av;
heap->prev = old_heap;
av->system_mem += heap->size;
/* Set up the new top. */
top (av) = chunk_at_offset (heap, sizeof (*heap));
set_head (top (av), (heap->size - sizeof (*heap)) | PREV_INUSE);
/* Setup fencepost and free the old top chunk with a multiple of
MALLOC_ALIGNMENT in size. */
/* The fencepost takes at least MINSIZE bytes, because it might
become the top chunk again later. Note that a footer is set
up, too, although the chunk is marked in use. */
old_size = (old_size - MINSIZE) & ~MALLOC_ALIGN_MASK;
set_head (chunk_at_offset (old_top, old_size + CHUNK_HDR_SZ),
0 | PREV_INUSE);
if (old_size >= MINSIZE)
{
set_head (chunk_at_offset (old_top, old_size),
CHUNK_HDR_SZ | PREV_INUSE);
set_foot (chunk_at_offset (old_top, old_size), CHUNK_HDR_SZ);
set_head (old_top, old_size | PREV_INUSE | NON_MAIN_ARENA);
_int_free (av, old_top, 1);
}
else
{
set_head (old_top, (old_size + CHUNK_HDR_SZ) | PREV_INUSE);
set_foot (old_top, (old_size + CHUNK_HDR_SZ));
}
}
else if (!tried_mmap)
{
/* We can at least try to use to mmap memory. If new_heap fails
it is unlikely that trying to allocate huge pages will
succeed. */
char *mm = sysmalloc_mmap (nb, pagesize, 0, av);
if (mm != MAP_FAILED)
return mm;
}
}
sysmalloc main arena
Inizia a calcolare la quantità di memoria necessaria. Inizierà richiedendo memoria contigua, quindi in questo caso sarà possibile utilizzare la vecchia memoria non utilizzata. Vengono inoltre eseguite alcune operazioni di allineamento.
sysmalloc main arena
// From https://github.com/bminor/glibc/blob/f942a732d37a96217ef828116ebe64a644db18d7/malloc/malloc.c#L2665C1-L2713C10
else /* av == main_arena */
{ /* Request enough space for nb + pad + overhead */
size = nb + mp_.top_pad + MINSIZE;
/*
If contiguous, we can subtract out existing space that we hope to
combine with new space. We add it back later only if
we don't actually get contiguous space.
*/
if (contiguous (av))
size -= old_size;
/*
Round to a multiple of page size or huge page size.
If MORECORE is not contiguous, this ensures that we only call it
with whole-page arguments. And if MORECORE is contiguous and
this is not first time through, this preserves page-alignment of
previous calls. Otherwise, we correct to page-align below.
*/
#ifdef MADV_HUGEPAGE
/* Defined in brk.c. */
extern void *__curbrk;
if (__glibc_unlikely (mp_.thp_pagesize != 0))
{
uintptr_t top = ALIGN_UP ((uintptr_t) __curbrk + size,
mp_.thp_pagesize);
size = top - (uintptr_t) __curbrk;
}
else
#endif
size = ALIGN_UP (size, GLRO(dl_pagesize));
/*
Don't try to call MORECORE if argument is so big as to appear
negative. Note that since mmap takes size_t arg, it may succeed
below even if we cannot call MORECORE.
*/
if (size > 0)
{
brk = (char *) (MORECORE (size));
if (brk != (char *) (MORECORE_FAILURE))
madvise_thp (brk, size);
LIBC_PROBE (memory_sbrk_more, 2, brk, size);
}
sysmalloc main arena previous error 1
Se il precedente ha restituito MORECORE_FAILURE
, prova di nuovo ad allocare memoria usando sysmalloc_mmap_fallback
sysmalloc
main arena previous error 1
// From https://github.com/bminor/glibc/blob/f942a732d37a96217ef828116ebe64a644db18d7/malloc/malloc.c#L2715C7-L2740C10
if (brk == (char *) (MORECORE_FAILURE))
{
/*
If have mmap, try using it as a backup when MORECORE fails or
cannot be used. This is worth doing on systems that have "holes" in
address space, so sbrk cannot extend to give contiguous space, but
space is available elsewhere. Note that we ignore mmap max count
and threshold limits, since the space will not be used as a
segregated mmap region.
*/
char *mbrk = MAP_FAILED;
if (mp_.hp_pagesize > 0)
mbrk = sysmalloc_mmap_fallback (&size, nb, old_size,
mp_.hp_pagesize, mp_.hp_pagesize,
mp_.hp_flags, av);
if (mbrk == MAP_FAILED)
mbrk = sysmalloc_mmap_fallback (&size, nb, old_size, MMAP_AS_MORECORE_SIZE,
pagesize, 0, av);
if (mbrk != MAP_FAILED)
{
/* We do not need, and cannot use, another sbrk call to find end */
brk = mbrk;
snd_brk = brk + size;
}
}
sysmalloc main arena continua
Se il precedente non ha restituito MORECORE_FAILURE
, se ha funzionato crea alcune allineamenti:
sysmalloc main arena errore precedente 2
// From https://github.com/bminor/glibc/blob/f942a732d37a96217ef828116ebe64a644db18d7/malloc/malloc.c#L2742
if (brk != (char *) (MORECORE_FAILURE))
{
if (mp_.sbrk_base == 0)
mp_.sbrk_base = brk;
av->system_mem += size;
/*
If MORECORE extends previous space, we can likewise extend top size.
*/
if (brk == old_end && snd_brk == (char *) (MORECORE_FAILURE))
set_head (old_top, (size + old_size) | PREV_INUSE);
else if (contiguous (av) && old_size && brk < old_end)
/* Oops! Someone else killed our space.. Can't touch anything. */
malloc_printerr ("break adjusted to free malloc space");
/*
Otherwise, make adjustments:
* If the first time through or noncontiguous, we need to call sbrk
just to find out where the end of memory lies.
* We need to ensure that all returned chunks from malloc will meet
MALLOC_ALIGNMENT
* If there was an intervening foreign sbrk, we need to adjust sbrk
request size to account for fact that we will not be able to
combine new space with existing space in old_top.
* Almost all systems internally allocate whole pages at a time, in
which case we might as well use the whole last page of request.
So we allocate enough more memory to hit a page boundary now,
which in turn causes future contiguous calls to page-align.
*/
else
{
front_misalign = 0;
end_misalign = 0;
correction = 0;
aligned_brk = brk;
/* handle contiguous cases */
if (contiguous (av))
{
/* Count foreign sbrk as system_mem. */
if (old_size)
av->system_mem += brk - old_end;
/* Guarantee alignment of first new chunk made from this space */
front_misalign = (INTERNAL_SIZE_T) chunk2mem (brk) & MALLOC_ALIGN_MASK;
if (front_misalign > 0)
{
/*
Skip over some bytes to arrive at an aligned position.
We don't need to specially mark these wasted front bytes.
They will never be accessed anyway because
prev_inuse of av->top (and any chunk created from its start)
is always true after initialization.
*/
correction = MALLOC_ALIGNMENT - front_misalign;
aligned_brk += correction;
}
/*
If this isn't adjacent to existing space, then we will not
be able to merge with old_top space, so must add to 2nd request.
*/
correction += old_size;
/* Extend the end address to hit a page boundary */
end_misalign = (INTERNAL_SIZE_T) (brk + size + correction);
correction += (ALIGN_UP (end_misalign, pagesize)) - end_misalign;
assert (correction >= 0);
snd_brk = (char *) (MORECORE (correction));
/*
If can't allocate correction, try to at least find out current
brk. It might be enough to proceed without failing.
Note that if second sbrk did NOT fail, we assume that space
is contiguous with first sbrk. This is a safe assumption unless
program is multithreaded but doesn't use locks and a foreign sbrk
occurred between our first and second calls.
*/
if (snd_brk == (char *) (MORECORE_FAILURE))
{
correction = 0;
snd_brk = (char *) (MORECORE (0));
}
else
madvise_thp (snd_brk, correction);
}
/* handle non-contiguous cases */
else
{
if (MALLOC_ALIGNMENT == CHUNK_HDR_SZ)
/* MORECORE/mmap must correctly align */
assert (((unsigned long) chunk2mem (brk) & MALLOC_ALIGN_MASK) == 0);
else
{
front_misalign = (INTERNAL_SIZE_T) chunk2mem (brk) & MALLOC_ALIGN_MASK;
if (front_misalign > 0)
{
/*
Skip over some bytes to arrive at an aligned position.
We don't need to specially mark these wasted front bytes.
They will never be accessed anyway because
prev_inuse of av->top (and any chunk created from its start)
is always true after initialization.
*/
aligned_brk += MALLOC_ALIGNMENT - front_misalign;
}
}
/* Find out current end of memory */
if (snd_brk == (char *) (MORECORE_FAILURE))
{
snd_brk = (char *) (MORECORE (0));
}
}
/* Adjust top based on results of second sbrk */
if (snd_brk != (char *) (MORECORE_FAILURE))
{
av->top = (mchunkptr) aligned_brk;
set_head (av->top, (snd_brk - aligned_brk + correction) | PREV_INUSE);
av->system_mem += correction;
/*
If not the first time through, we either have a
gap due to foreign sbrk or a non-contiguous region. Insert a
double fencepost at old_top to prevent consolidation with space
we don't own. These fenceposts are artificial chunks that are
marked as inuse and are in any case too small to use. We need
two to make sizes and alignments work out.
*/
if (old_size != 0)
{
/*
Shrink old_top to insert fenceposts, keeping size a
multiple of MALLOC_ALIGNMENT. We know there is at least
enough space in old_top to do this.
*/
old_size = (old_size - 2 * CHUNK_HDR_SZ) & ~MALLOC_ALIGN_MASK;
set_head (old_top, old_size | PREV_INUSE);
/*
Note that the following assignments completely overwrite
old_top when old_size was previously MINSIZE. This is
intentional. We need the fencepost, even if old_top otherwise gets
lost.
*/
set_head (chunk_at_offset (old_top, old_size),
CHUNK_HDR_SZ | PREV_INUSE);
set_head (chunk_at_offset (old_top,
old_size + CHUNK_HDR_SZ),
CHUNK_HDR_SZ | PREV_INUSE);
/* If possible, release the rest. */
if (old_size >= MINSIZE)
{
_int_free (av, old_top, 1);
}
}
}
}
}
} /* if (av != &main_arena) */
sysmalloc finale
Completa l'allocazione aggiornando le informazioni dell'arena.
// From https://github.com/bminor/glibc/blob/f942a732d37a96217ef828116ebe64a644db18d7/malloc/malloc.c#L2921C3-L2943C12
if ((unsigned long) av->system_mem > (unsigned long) (av->max_system_mem))
av->max_system_mem = av->system_mem;
check_malloc_state (av);
/* finally, do the allocation */
p = av->top;
size = chunksize (p);
/* check that one of the above allocation paths succeeded */
if ((unsigned long) (size) >= (unsigned long) (nb + MINSIZE))
{
remainder_size = size - nb;
remainder = chunk_at_offset (p, nb);
av->top = remainder;
set_head (p, nb | PREV_INUSE | (av != &main_arena ? NON_MAIN_ARENA : 0));
set_head (remainder, remainder_size | PREV_INUSE);
check_malloced_chunk (av, p, nb);
return chunk2mem (p);
}
/* catch all failure paths */
__set_errno (ENOMEM);
return 0;
sysmalloc_mmap
codice sysmalloc_mmap
// From https://github.com/bminor/glibc/blob/f942a732d37a96217ef828116ebe64a644db18d7/malloc/malloc.c#L2392C1-L2481C2
static void *
sysmalloc_mmap (INTERNAL_SIZE_T nb, size_t pagesize, int extra_flags, mstate av)
{
long int size;
/*
Round up size to nearest page. For mmapped chunks, the overhead is one
SIZE_SZ unit larger than for normal chunks, because there is no
following chunk whose prev_size field could be used.
See the front_misalign handling below, for glibc there is no need for
further alignments unless we have have high alignment.
*/
if (MALLOC_ALIGNMENT == CHUNK_HDR_SZ)
size = ALIGN_UP (nb + SIZE_SZ, pagesize);
else
size = ALIGN_UP (nb + SIZE_SZ + MALLOC_ALIGN_MASK, pagesize);
/* Don't try if size wraps around 0. */
if ((unsigned long) (size) <= (unsigned long) (nb))
return MAP_FAILED;
char *mm = (char *) MMAP (0, size,
mtag_mmap_flags | PROT_READ | PROT_WRITE,
extra_flags);
if (mm == MAP_FAILED)
return mm;
#ifdef MAP_HUGETLB
if (!(extra_flags & MAP_HUGETLB))
madvise_thp (mm, size);
#endif
__set_vma_name (mm, size, " glibc: malloc");
/*
The offset to the start of the mmapped region is stored in the prev_size
field of the chunk. This allows us to adjust returned start address to
meet alignment requirements here and in memalign(), and still be able to
compute proper address argument for later munmap in free() and realloc().
*/
INTERNAL_SIZE_T front_misalign; /* unusable bytes at front of new space */
if (MALLOC_ALIGNMENT == CHUNK_HDR_SZ)
{
/* For glibc, chunk2mem increases the address by CHUNK_HDR_SZ and
MALLOC_ALIGN_MASK is CHUNK_HDR_SZ-1. Each mmap'ed area is page
aligned and therefore definitely MALLOC_ALIGN_MASK-aligned. */
assert (((INTERNAL_SIZE_T) chunk2mem (mm) & MALLOC_ALIGN_MASK) == 0);
front_misalign = 0;
}
else
front_misalign = (INTERNAL_SIZE_T) chunk2mem (mm) & MALLOC_ALIGN_MASK;
mchunkptr p; /* the allocated/returned chunk */
if (front_misalign > 0)
{
ptrdiff_t correction = MALLOC_ALIGNMENT - front_misalign;
p = (mchunkptr) (mm + correction);
set_prev_size (p, correction);
set_head (p, (size - correction) | IS_MMAPPED);
}
else
{
p = (mchunkptr) mm;
set_prev_size (p, 0);
set_head (p, size | IS_MMAPPED);
}
/* update statistics */
int new = atomic_fetch_add_relaxed (&mp_.n_mmaps, 1) + 1;
atomic_max (&mp_.max_n_mmaps, new);
unsigned long sum;
sum = atomic_fetch_add_relaxed (&mp_.mmapped_mem, size) + size;
atomic_max (&mp_.max_mmapped_mem, sum);
check_chunk (av, p);
return chunk2mem (p);
}
tip
Impara e pratica l'Hacking AWS:HackTricks Training AWS Red Team Expert (ARTE)
Impara e pratica l'Hacking GCP: HackTricks Training GCP Red Team Expert (GRTE)
Supporta HackTricks
- Controlla i piani di abbonamento!
- Unisciti al 💬 gruppo Discord o al gruppo telegram o seguici su Twitter 🐦 @hacktricks_live.
- Condividi trucchi di hacking inviando PR ai HackTricks e HackTricks Cloud repos di github.