free

Reading time: 9 minutes

tip

Aprende y practica AWS Hacking:HackTricks Training AWS Red Team Expert (ARTE)
Aprende y practica GCP Hacking: HackTricks Training GCP Red Team Expert (GRTE)

Apoya a HackTricks

Resumen de Orden de Liberación

(No se explican verificaciones en este resumen y algunos casos han sido omitidos por brevedad)

  1. Si la dirección es nula, no hacer nada
  2. Si el chunk fue mmaped, mummapearlo y terminar
  3. Llamar a _int_free:
    1. Si es posible, agregar el chunk al tcache
    2. Si es posible, agregar el chunk al fast bin
    3. Llamar a _int_free_merge_chunk para consolidar el chunk si es necesario y agregarlo a la lista no ordenada

__libc_free

Free llama a __libc_free.

  • Si la dirección pasada es nula (0), no hacer nada.
  • Verificar la etiqueta del puntero
  • Si el chunk es mmaped, mummap y eso es todo
  • Si no, agregar el color y llamar a _int_free sobre él
código de __lib_free
c
void
__libc_free (void *mem)
{
mstate ar_ptr;
mchunkptr p;                          /* chunk corresponding to mem */

if (mem == 0)                              /* free(0) has no effect */
return;

/* Quickly check that the freed pointer matches the tag for the memory.
This gives a useful double-free detection.  */
if (__glibc_unlikely (mtag_enabled))
*(volatile char *)mem;

int err = errno;

p = mem2chunk (mem);

if (chunk_is_mmapped (p))                       /* release mmapped memory. */
{
/* See if the dynamic brk/mmap threshold needs adjusting.
Dumped fake mmapped chunks do not affect the threshold.  */
if (!mp_.no_dyn_threshold
&& chunksize_nomask (p) > mp_.mmap_threshold
&& chunksize_nomask (p) <= DEFAULT_MMAP_THRESHOLD_MAX)
{
mp_.mmap_threshold = chunksize (p);
mp_.trim_threshold = 2 * mp_.mmap_threshold;
LIBC_PROBE (memory_mallopt_free_dyn_thresholds, 2,
mp_.mmap_threshold, mp_.trim_threshold);
}
munmap_chunk (p);
}
else
{
MAYBE_INIT_TCACHE ();

/* Mark the chunk as belonging to the library again.  */
(void)tag_region (chunk2mem (p), memsize (p));

ar_ptr = arena_for_chunk (p);
_int_free (ar_ptr, p, 0);
}

__set_errno (err);
}
libc_hidden_def (__libc_free)

_int_free

_int_free start

Comienza con algunas verificaciones asegurándose de que:

  • el puntero esté alineado, o desencadene el error free(): invalid pointer
  • el tamaño no sea menor que el mínimo y que el tamaño también esté alineado o desencadene el error: free(): invalid size
_int_free start
c
// From https://github.com/bminor/glibc/blob/f942a732d37a96217ef828116ebe64a644db18d7/malloc/malloc.c#L4493C1-L4513C28

#define aligned_OK(m) (((unsigned long) (m) &MALLOC_ALIGN_MASK) == 0)

static void
_int_free (mstate av, mchunkptr p, int have_lock)
{
INTERNAL_SIZE_T size;        /* its size */
mfastbinptr *fb;             /* associated fastbin */

size = chunksize (p);

/* Little security check which won't hurt performance: the
allocator never wraps around at the end of the address space.
Therefore we can exclude some size values which might appear
here by accident or by "design" from some intruder.  */
if (__builtin_expect ((uintptr_t) p > (uintptr_t) -size, 0)
|| __builtin_expect (misaligned_chunk (p), 0))
malloc_printerr ("free(): invalid pointer");
/* We know that each chunk is at least MINSIZE bytes in size or a
multiple of MALLOC_ALIGNMENT.  */
if (__glibc_unlikely (size < MINSIZE || !aligned_OK (size)))
malloc_printerr ("free(): invalid size");

check_inuse_chunk(av, p);

_int_free tcache

Primero intentará asignar este fragmento en el tcache relacionado. Sin embargo, se realizan algunas verificaciones previamente. Recorrerá todos los fragmentos del tcache en el mismo índice que el fragmento liberado y:

  • Si hay más entradas que mp_.tcache_count: free(): too many chunks detected in tcache
  • Si la entrada no está alineada: free(): unaligned chunk detected in tcache 2
  • si el fragmento liberado ya fue liberado y está presente como fragmento en el tcache: free(): double free detected in tcache 2

Si todo va bien, el fragmento se agrega al tcache y la función devuelve.

_int_free tcache
c
// From https://github.com/bminor/glibc/blob/f942a732d37a96217ef828116ebe64a644db18d7/malloc/malloc.c#L4515C1-L4554C7
#if USE_TCACHE
{
size_t tc_idx = csize2tidx (size);
if (tcache != NULL && tc_idx < mp_.tcache_bins)
{
/* Check to see if it's already in the tcache.  */
tcache_entry *e = (tcache_entry *) chunk2mem (p);

/* This test succeeds on double free.  However, we don't 100%
trust it (it also matches random payload data at a 1 in
2^<size_t> chance), so verify it's not an unlikely
coincidence before aborting.  */
if (__glibc_unlikely (e->key == tcache_key))
{
tcache_entry *tmp;
size_t cnt = 0;
LIBC_PROBE (memory_tcache_double_free, 2, e, tc_idx);
for (tmp = tcache->entries[tc_idx];
tmp;
tmp = REVEAL_PTR (tmp->next), ++cnt)
{
if (cnt >= mp_.tcache_count)
malloc_printerr ("free(): too many chunks detected in tcache");
if (__glibc_unlikely (!aligned_OK (tmp)))
malloc_printerr ("free(): unaligned chunk detected in tcache 2");
if (tmp == e)
malloc_printerr ("free(): double free detected in tcache 2");
/* If we get here, it was a coincidence.  We've wasted a
few cycles, but don't abort.  */
}
}

if (tcache->counts[tc_idx] < mp_.tcache_count)
{
tcache_put (p, tc_idx);
return;
}
}
}
#endif

_int_free fast bin

Comienza verificando que el tamaño sea adecuado para fast bin y comprueba si es posible configurarlo cerca del top chunk.

Luego, agrega el chunk liberado en la parte superior del fast bin mientras realizas algunas verificaciones:

  • Si el tamaño del chunk es inválido (demasiado grande o pequeño) desencadena: free(): invalid next size (fast)
  • Si el chunk agregado ya era el top del fast bin: double free or corruption (fasttop)
  • Si el tamaño del chunk en la parte superior tiene un tamaño diferente al del chunk que estamos agregando: invalid fastbin entry (free)
_int_free Fast Bin
c
// From https://github.com/bminor/glibc/blob/f942a732d37a96217ef828116ebe64a644db18d7/malloc/malloc.c#L4556C2-L4631C4

/*
If eligible, place chunk on a fastbin so it can be found
and used quickly in malloc.
*/

if ((unsigned long)(size) <= (unsigned long)(get_max_fast ())

#if TRIM_FASTBINS
/*
If TRIM_FASTBINS set, don't place chunks
bordering top into fastbins
*/
&& (chunk_at_offset(p, size) != av->top)
#endif
) {

if (__builtin_expect (chunksize_nomask (chunk_at_offset (p, size))
<= CHUNK_HDR_SZ, 0)
|| __builtin_expect (chunksize (chunk_at_offset (p, size))
>= av->system_mem, 0))
{
bool fail = true;
/* We might not have a lock at this point and concurrent modifications
of system_mem might result in a false positive.  Redo the test after
getting the lock.  */
if (!have_lock)
{
__libc_lock_lock (av->mutex);
fail = (chunksize_nomask (chunk_at_offset (p, size)) <= CHUNK_HDR_SZ
|| chunksize (chunk_at_offset (p, size)) >= av->system_mem);
__libc_lock_unlock (av->mutex);
}

if (fail)
malloc_printerr ("free(): invalid next size (fast)");
}

free_perturb (chunk2mem(p), size - CHUNK_HDR_SZ);

atomic_store_relaxed (&av->have_fastchunks, true);
unsigned int idx = fastbin_index(size);
fb = &fastbin (av, idx);

/* Atomically link P to its fastbin: P->FD = *FB; *FB = P;  */
mchunkptr old = *fb, old2;

if (SINGLE_THREAD_P)
{
/* Check that the top of the bin is not the record we are going to
add (i.e., double free).  */
if (__builtin_expect (old == p, 0))
malloc_printerr ("double free or corruption (fasttop)");
p->fd = PROTECT_PTR (&p->fd, old);
*fb = p;
}
else
do
{
/* Check that the top of the bin is not the record we are going to
add (i.e., double free).  */
if (__builtin_expect (old == p, 0))
malloc_printerr ("double free or corruption (fasttop)");
old2 = old;
p->fd = PROTECT_PTR (&p->fd, old);
}
while ((old = catomic_compare_and_exchange_val_rel (fb, p, old2))
!= old2);

/* Check that size of fastbin chunk at the top is the same as
size of the chunk that we are adding.  We can dereference OLD
only if we have the lock, otherwise it might have already been
allocated again.  */
if (have_lock && old != NULL
&& __builtin_expect (fastbin_index (chunksize (old)) != idx, 0))
malloc_printerr ("invalid fastbin entry (free)");
}

_int_free finale

Si el bloque aún no estaba asignado en ningún contenedor, llama a _int_free_merge_chunk

_int_free finale
c
/*
Consolidate other non-mmapped chunks as they arrive.
*/

else if (!chunk_is_mmapped(p)) {

/* If we're single-threaded, don't lock the arena.  */
if (SINGLE_THREAD_P)
have_lock = true;

if (!have_lock)
__libc_lock_lock (av->mutex);

_int_free_merge_chunk (av, p, size);

if (!have_lock)
__libc_lock_unlock (av->mutex);
}
/*
If the chunk was allocated via mmap, release via munmap().
*/

else {
munmap_chunk (p);
}
}

_int_free_merge_chunk

Esta función intentará fusionar el chunk P de SIZE bytes con sus vecinos. Coloca el chunk resultante en la lista de bins no ordenados.

Se realizan algunas verificaciones:

  • Si el chunk es el chunk superior: double free or corruption (top)
  • Si el siguiente chunk está fuera de los límites de la arena: double free or corruption (out)
  • Si el chunk no está marcado como utilizado (en el prev_inuse del siguiente chunk): double free or corruption (!prev)
  • Si el siguiente chunk tiene un tamaño demasiado pequeño o demasiado grande: free(): invalid next size (normal)
  • si el chunk anterior no está en uso, intentará consolidar. Pero, si el prev_size difiere del tamaño indicado en el chunk anterior: corrupted size vs. prev_size while consolidating
_int_free_merge_chunk code
c
// From https://github.com/bminor/glibc/blob/f942a732d37a96217ef828116ebe64a644db18d7/malloc/malloc.c#L4660C1-L4702C2

/* Try to merge chunk P of SIZE bytes with its neighbors.  Put the
resulting chunk on the appropriate bin list.  P must not be on a
bin list yet, and it can be in use.  */
static void
_int_free_merge_chunk (mstate av, mchunkptr p, INTERNAL_SIZE_T size)
{
mchunkptr nextchunk = chunk_at_offset(p, size);

/* Lightweight tests: check whether the block is already the
top block.  */
if (__glibc_unlikely (p == av->top))
malloc_printerr ("double free or corruption (top)");
/* Or whether the next chunk is beyond the boundaries of the arena.  */
if (__builtin_expect (contiguous (av)
&& (char *) nextchunk
>= ((char *) av->top + chunksize(av->top)), 0))
malloc_printerr ("double free or corruption (out)");
/* Or whether the block is actually not marked used.  */
if (__glibc_unlikely (!prev_inuse(nextchunk)))
malloc_printerr ("double free or corruption (!prev)");

INTERNAL_SIZE_T nextsize = chunksize(nextchunk);
if (__builtin_expect (chunksize_nomask (nextchunk) <= CHUNK_HDR_SZ, 0)
|| __builtin_expect (nextsize >= av->system_mem, 0))
malloc_printerr ("free(): invalid next size (normal)");

free_perturb (chunk2mem(p), size - CHUNK_HDR_SZ);

/* Consolidate backward.  */
if (!prev_inuse(p))
{
INTERNAL_SIZE_T prevsize = prev_size (p);
size += prevsize;
p = chunk_at_offset(p, -((long) prevsize));
if (__glibc_unlikely (chunksize(p) != prevsize))
malloc_printerr ("corrupted size vs. prev_size while consolidating");
unlink_chunk (av, p);
}

/* Write the chunk header, maybe after merging with the following chunk.  */
size = _int_free_create_chunk (av, p, size, nextchunk, nextsize);
_int_free_maybe_consolidate (av, size);
}

tip

Aprende y practica AWS Hacking:HackTricks Training AWS Red Team Expert (ARTE)
Aprende y practica GCP Hacking: HackTricks Training GCP Red Team Expert (GRTE)

Apoya a HackTricks