Rust Grundlagen
Reading time: 5 minutes
Generische Typen
Erstellen Sie eine Struktur, bei der 1 ihrer Werte jeden Typ haben könnte.
#![allow(unused)] fn main() { struct Wrapper<T> { value: T, } impl<T> Wrapper<T> { pub fn new(value: T) -> Self { Wrapper { value } } } Wrapper::new(42).value Wrapper::new("Foo").value, "Foo" }
Option, Some & None
Der Option-Typ bedeutet, dass der Wert vom Typ Some (es gibt etwas) oder None sein könnte:
#![allow(unused)] fn main() { pub enum Option<T> { None, Some(T), } }
Sie können Funktionen wie is_some()
oder is_none()
verwenden, um den Wert der Option zu überprüfen.
Makros
Makros sind leistungsfähiger als Funktionen, da sie sich erweitern, um mehr Code zu erzeugen, als den Code, den Sie manuell geschrieben haben. Zum Beispiel muss eine Funktionssignatur die Anzahl und den Typ der Parameter deklarieren, die die Funktion hat. Makros hingegen können eine variable Anzahl von Parametern annehmen: Wir können println!("hello")
mit einem Argument oder println!("hello {}", name)
mit zwei Argumenten aufrufen. Außerdem werden Makros erweitert, bevor der Compiler die Bedeutung des Codes interpretiert, sodass ein Makro beispielsweise ein Trait für einen bestimmten Typ implementieren kann. Eine Funktion kann das nicht, da sie zur Laufzeit aufgerufen wird und ein Trait zur Compile-Zeit implementiert werden muss.
macro_rules! my_macro { () => { println!("Check out my macro!"); }; ($val:expr) => { println!("Look at this other macro: {}", $val); } } fn main() { my_macro!(); my_macro!(7777); } // Export a macro from a module mod macros { #[macro_export] macro_rules! my_macro { () => { println!("Check out my macro!"); }; } }
Iterieren
#![allow(unused)] fn main() { // Iterate through a vector let my_fav_fruits = vec!["banana", "raspberry"]; let mut my_iterable_fav_fruits = my_fav_fruits.iter(); assert_eq!(my_iterable_fav_fruits.next(), Some(&"banana")); assert_eq!(my_iterable_fav_fruits.next(), Some(&"raspberry")); assert_eq!(my_iterable_fav_fruits.next(), None); // When it's over, it's none // One line iteration with action my_fav_fruits.iter().map(|x| capitalize_first(x)).collect() // Hashmap iteration for (key, hashvalue) in &*map { for key in map.keys() { for value in map.values() { }
Rekursive Box
#![allow(unused)] fn main() { enum List { Cons(i32, List), Nil, } let list = Cons(1, Cons(2, Cons(3, Nil))); }
Bedingungen
wenn
#![allow(unused)] fn main() { let n = 5; if n < 0 { print!("{} is negative", n); } else if n > 0 { print!("{} is positive", n); } else { print!("{} is zero", n); } }
Übereinstimmung
#![allow(unused)] fn main() { match number { // Match a single value 1 => println!("One!"), // Match several values 2 | 3 | 5 | 7 | 11 => println!("This is a prime"), // TODO ^ Try adding 13 to the list of prime values // Match an inclusive range 13..=19 => println!("A teen"), // Handle the rest of cases _ => println!("Ain't special"), } let boolean = true; // Match is an expression too let binary = match boolean { // The arms of a match must cover all the possible values false => 0, true => 1, // TODO ^ Try commenting out one of these arms }; }
Schleife (unendlich)
#![allow(unused)] fn main() { loop { count += 1; if count == 3 { println!("three"); continue; } println!("{}", count); if count == 5 { println!("OK, that's enough"); break; } } }
während
#![allow(unused)] fn main() { let mut n = 1; while n < 101 { if n % 15 == 0 { println!("fizzbuzz"); } else if n % 5 == 0 { println!("buzz"); } else { println!("{}", n); } n += 1; } }
für
#![allow(unused)] fn main() { for n in 1..101 { if n % 15 == 0 { println!("fizzbuzz"); } else { println!("{}", n); } } // Use "..=" to make inclusive both ends for n in 1..=100 { if n % 15 == 0 { println!("fizzbuzz"); } else if n % 3 == 0 { println!("fizz"); } else if n % 5 == 0 { println!("buzz"); } else { println!("{}", n); } } // ITERATIONS let names = vec!["Bob", "Frank", "Ferris"]; //iter - Doesn't consume the collection for name in names.iter() { match name { &"Ferris" => println!("There is a rustacean among us!"), _ => println!("Hello {}", name), } } //into_iter - COnsumes the collection for name in names.into_iter() { match name { "Ferris" => println!("There is a rustacean among us!"), _ => println!("Hello {}", name), } } //iter_mut - This mutably borrows each element of the collection for name in names.iter_mut() { *name = match name { &mut "Ferris" => "There is a rustacean among us!", _ => "Hello", } } }
wenn lass
#![allow(unused)] fn main() { let optional_word = Some(String::from("rustlings")); if let word = optional_word { println!("The word is: {}", word); } else { println!("The optional word doesn't contain anything"); } }
while let
#![allow(unused)] fn main() { let mut optional = Some(0); // This reads: "while `let` destructures `optional` into // `Some(i)`, evaluate the block (`{}`). Else `break`. while let Some(i) = optional { if i > 9 { println!("Greater than 9, quit!"); optional = None; } else { println!("`i` is `{:?}`. Try again.", i); optional = Some(i + 1); } // ^ Less rightward drift and doesn't require // explicitly handling the failing case. } }
Eigenschaften
Erstellen Sie eine neue Methode für einen Typ
#![allow(unused)] fn main() { trait AppendBar { fn append_bar(self) -> Self; } impl AppendBar for String { fn append_bar(self) -> Self{ format!("{}Bar", self) } } let s = String::from("Foo"); let s = s.append_bar(); println!("s: {}", s); }
Tests
#![allow(unused)] fn main() { #[cfg(test)] mod tests { #[test] fn you_can_assert() { assert!(true); assert_eq!(true, true); assert_ne!(true, false); } } }
Threading
Arc
Ein Arc kann Clone verwenden, um weitere Referenzen auf das Objekt zu erstellen, um sie an die Threads weiterzugeben. Wenn der letzte Referenzzeiger auf einen Wert außerhalb des Gültigkeitsbereichs ist, wird die Variable verworfen.
#![allow(unused)] fn main() { use std::sync::Arc; let apple = Arc::new("the same apple"); for _ in 0..10 { let apple = Arc::clone(&apple); thread::spawn(move || { println!("{:?}", apple); }); } }
Threads
In diesem Fall werden wir dem Thread eine Variable übergeben, die er ändern kann.
fn main() { let status = Arc::new(Mutex::new(JobStatus { jobs_completed: 0 })); let status_shared = Arc::clone(&status); thread::spawn(move || { for _ in 0..10 { thread::sleep(Duration::from_millis(250)); let mut status = status_shared.lock().unwrap(); status.jobs_completed += 1; } }); while status.lock().unwrap().jobs_completed < 10 { println!("waiting... "); thread::sleep(Duration::from_millis(500)); } }