Rust Basics
Reading time: 5 minutes
泛型类型
创建一个结构体,其中一个值可以是任何类型
rust
#![allow(unused)] fn main() { struct Wrapper<T> { value: T, } impl<T> Wrapper<T> { pub fn new(value: T) -> Self { Wrapper { value } } } Wrapper::new(42).value Wrapper::new("Foo").value, "Foo" }
Option, Some & None
Option 类型意味着值可能是 Some 类型(有某些东西)或 None:
rust
#![allow(unused)] fn main() { pub enum Option<T> { None, Some(T), } }
您可以使用 is_some()
或 is_none()
等函数来检查 Option 的值。
宏
宏比函数更强大,因为它们扩展以生成比您手动编写的代码更多的代码。例如,函数签名必须声明函数具有的参数数量和类型。另一方面,宏可以接受可变数量的参数:我们可以用一个参数调用 println!("hello")
,或者用两个参数调用 println!("hello {}", name)
。此外,宏在编译器解释代码含义之前被扩展,因此宏可以在给定类型上实现一个特征。例如,函数不能这样做,因为它在运行时被调用,而特征需要在编译时实现。
rust
macro_rules! my_macro { () => { println!("Check out my macro!"); }; ($val:expr) => { println!("Look at this other macro: {}", $val); } } fn main() { my_macro!(); my_macro!(7777); } // Export a macro from a module mod macros { #[macro_export] macro_rules! my_macro { () => { println!("Check out my macro!"); }; } }
迭代
rust
#![allow(unused)] fn main() { // Iterate through a vector let my_fav_fruits = vec!["banana", "raspberry"]; let mut my_iterable_fav_fruits = my_fav_fruits.iter(); assert_eq!(my_iterable_fav_fruits.next(), Some(&"banana")); assert_eq!(my_iterable_fav_fruits.next(), Some(&"raspberry")); assert_eq!(my_iterable_fav_fruits.next(), None); // When it's over, it's none // One line iteration with action my_fav_fruits.iter().map(|x| capitalize_first(x)).collect() // Hashmap iteration for (key, hashvalue) in &*map { for key in map.keys() { for value in map.values() { }
递归盒子
rust
#![allow(unused)] fn main() { enum List { Cons(i32, List), Nil, } let list = Cons(1, Cons(2, Cons(3, Nil))); }
条件语句
如果
rust
#![allow(unused)] fn main() { let n = 5; if n < 0 { print!("{} is negative", n); } else if n > 0 { print!("{} is positive", n); } else { print!("{} is zero", n); } }
匹配
rust
#![allow(unused)] fn main() { match number { // Match a single value 1 => println!("One!"), // Match several values 2 | 3 | 5 | 7 | 11 => println!("This is a prime"), // TODO ^ Try adding 13 to the list of prime values // Match an inclusive range 13..=19 => println!("A teen"), // Handle the rest of cases _ => println!("Ain't special"), } let boolean = true; // Match is an expression too let binary = match boolean { // The arms of a match must cover all the possible values false => 0, true => 1, // TODO ^ Try commenting out one of these arms }; }
循环(无限)
rust
#![allow(unused)] fn main() { loop { count += 1; if count == 3 { println!("three"); continue; } println!("{}", count); if count == 5 { println!("OK, that's enough"); break; } } }
当
rust
#![allow(unused)] fn main() { let mut n = 1; while n < 101 { if n % 15 == 0 { println!("fizzbuzz"); } else if n % 5 == 0 { println!("buzz"); } else { println!("{}", n); } n += 1; } }
为
rust
#![allow(unused)] fn main() { for n in 1..101 { if n % 15 == 0 { println!("fizzbuzz"); } else { println!("{}", n); } } // Use "..=" to make inclusive both ends for n in 1..=100 { if n % 15 == 0 { println!("fizzbuzz"); } else if n % 3 == 0 { println!("fizz"); } else if n % 5 == 0 { println!("buzz"); } else { println!("{}", n); } } // ITERATIONS let names = vec!["Bob", "Frank", "Ferris"]; //iter - Doesn't consume the collection for name in names.iter() { match name { &"Ferris" => println!("There is a rustacean among us!"), _ => println!("Hello {}", name), } } //into_iter - COnsumes the collection for name in names.into_iter() { match name { "Ferris" => println!("There is a rustacean among us!"), _ => println!("Hello {}", name), } } //iter_mut - This mutably borrows each element of the collection for name in names.iter_mut() { *name = match name { &mut "Ferris" => "There is a rustacean among us!", _ => "Hello", } } }
如果让
rust
#![allow(unused)] fn main() { let optional_word = Some(String::from("rustlings")); if let word = optional_word { println!("The word is: {}", word); } else { println!("The optional word doesn't contain anything"); } }
while let
rust
#![allow(unused)] fn main() { let mut optional = Some(0); // This reads: "while `let` destructures `optional` into // `Some(i)`, evaluate the block (`{}`). Else `break`. while let Some(i) = optional { if i > 9 { println!("Greater than 9, quit!"); optional = None; } else { println!("`i` is `{:?}`. Try again.", i); optional = Some(i + 1); } // ^ Less rightward drift and doesn't require // explicitly handling the failing case. } }
特性
为一个类型创建一个新方法
rust
#![allow(unused)] fn main() { trait AppendBar { fn append_bar(self) -> Self; } impl AppendBar for String { fn append_bar(self) -> Self{ format!("{}Bar", self) } } let s = String::from("Foo"); let s = s.append_bar(); println!("s: {}", s); }
测试
rust
#![allow(unused)] fn main() { #[cfg(test)] mod tests { #[test] fn you_can_assert() { assert!(true); assert_eq!(true, true); assert_ne!(true, false); } } }
线程
Arc
Arc 可以使用 Clone 创建更多对对象的引用,以将它们传递给线程。当指向一个值的最后一个引用指针超出作用域时,该变量会被丢弃。
rust
#![allow(unused)] fn main() { use std::sync::Arc; let apple = Arc::new("the same apple"); for _ in 0..10 { let apple = Arc::clone(&apple); thread::spawn(move || { println!("{:?}", apple); }); } }
线程
在这种情况下,我们将传递一个变量给线程,它将能够修改该变量。
rust
fn main() { let status = Arc::new(Mutex::new(JobStatus { jobs_completed: 0 })); let status_shared = Arc::clone(&status); thread::spawn(move || { for _ in 0..10 { thread::sleep(Duration::from_millis(250)); let mut status = status_shared.lock().unwrap(); status.jobs_completed += 1; } }); while status.lock().unwrap().jobs_completed < 10 { println!("waiting... "); thread::sleep(Duration::from_millis(500)); } }