Rust Basics
Reading time: 5 minutes
Generic Types
एक स्ट्रक्ट बनाएं जहां उनके 1 मान किसी भी प्रकार का हो सकता है
#![allow(unused)] fn main() { struct Wrapper<T> { value: T, } impl<T> Wrapper<T> { pub fn new(value: T) -> Self { Wrapper { value } } } Wrapper::new(42).value Wrapper::new("Foo").value, "Foo" }
Option, Some & None
Option प्रकार का अर्थ है कि मान Some (कुछ है) या None का हो सकता है:
#![allow(unused)] fn main() { pub enum Option<T> { None, Some(T), } }
आप is_some()
या is_none()
जैसी फ़ंक्शंस का उपयोग करके Option के मान की जांच कर सकते हैं।
मैक्रोज़
मैक्रोज़ फ़ंक्शंस की तुलना में अधिक शक्तिशाली होते हैं क्योंकि ये उस कोड को उत्पन्न करने के लिए विस्तारित होते हैं जो आपने मैन्युअल रूप से लिखा है। उदाहरण के लिए, एक फ़ंक्शन सिग्नेचर को फ़ंक्शन के पास मौजूद पैरामीटर की संख्या और प्रकार को घोषित करना चाहिए। दूसरी ओर, मैक्रोज़ एक परिवर्तनीय संख्या में पैरामीटर ले सकते हैं: हम println!("hello")
को एक तर्क के साथ या println!("hello {}", name)
को दो तर्कों के साथ कॉल कर सकते हैं। इसके अलावा, मैक्रोज़ कोड के अर्थ की व्याख्या करने से पहले विस्तारित होते हैं, इसलिए एक मैक्रो, उदाहरण के लिए, एक दिए गए प्रकार पर एक trait को लागू कर सकता है। एक फ़ंक्शन ऐसा नहीं कर सकता, क्योंकि इसे रनटाइम पर कॉल किया जाता है और एक trait को संकलन समय पर लागू करने की आवश्यकता होती है।
macro_rules! my_macro { () => { println!("Check out my macro!"); }; ($val:expr) => { println!("Look at this other macro: {}", $val); } } fn main() { my_macro!(); my_macro!(7777); } // Export a macro from a module mod macros { #[macro_export] macro_rules! my_macro { () => { println!("Check out my macro!"); }; } }
पुनरावृत्ति
#![allow(unused)] fn main() { // Iterate through a vector let my_fav_fruits = vec!["banana", "raspberry"]; let mut my_iterable_fav_fruits = my_fav_fruits.iter(); assert_eq!(my_iterable_fav_fruits.next(), Some(&"banana")); assert_eq!(my_iterable_fav_fruits.next(), Some(&"raspberry")); assert_eq!(my_iterable_fav_fruits.next(), None); // When it's over, it's none // One line iteration with action my_fav_fruits.iter().map(|x| capitalize_first(x)).collect() // Hashmap iteration for (key, hashvalue) in &*map { for key in map.keys() { for value in map.values() { }
पुनरावृत्त बॉक्स
#![allow(unused)] fn main() { enum List { Cons(i32, List), Nil, } let list = Cons(1, Cons(2, Cons(3, Nil))); }
शर्तें
यदि
#![allow(unused)] fn main() { let n = 5; if n < 0 { print!("{} is negative", n); } else if n > 0 { print!("{} is positive", n); } else { print!("{} is zero", n); } }
मिलान
#![allow(unused)] fn main() { match number { // Match a single value 1 => println!("One!"), // Match several values 2 | 3 | 5 | 7 | 11 => println!("This is a prime"), // TODO ^ Try adding 13 to the list of prime values // Match an inclusive range 13..=19 => println!("A teen"), // Handle the rest of cases _ => println!("Ain't special"), } let boolean = true; // Match is an expression too let binary = match boolean { // The arms of a match must cover all the possible values false => 0, true => 1, // TODO ^ Try commenting out one of these arms }; }
लूप (अनंत)
#![allow(unused)] fn main() { loop { count += 1; if count == 3 { println!("three"); continue; } println!("{}", count); if count == 5 { println!("OK, that's enough"); break; } } }
जबकि
#![allow(unused)] fn main() { let mut n = 1; while n < 101 { if n % 15 == 0 { println!("fizzbuzz"); } else if n % 5 == 0 { println!("buzz"); } else { println!("{}", n); } n += 1; } }
के लिए
#![allow(unused)] fn main() { for n in 1..101 { if n % 15 == 0 { println!("fizzbuzz"); } else { println!("{}", n); } } // Use "..=" to make inclusive both ends for n in 1..=100 { if n % 15 == 0 { println!("fizzbuzz"); } else if n % 3 == 0 { println!("fizz"); } else if n % 5 == 0 { println!("buzz"); } else { println!("{}", n); } } // ITERATIONS let names = vec!["Bob", "Frank", "Ferris"]; //iter - Doesn't consume the collection for name in names.iter() { match name { &"Ferris" => println!("There is a rustacean among us!"), _ => println!("Hello {}", name), } } //into_iter - COnsumes the collection for name in names.into_iter() { match name { "Ferris" => println!("There is a rustacean among us!"), _ => println!("Hello {}", name), } } //iter_mut - This mutably borrows each element of the collection for name in names.iter_mut() { *name = match name { &mut "Ferris" => "There is a rustacean among us!", _ => "Hello", } } }
यदि तो
#![allow(unused)] fn main() { let optional_word = Some(String::from("rustlings")); if let word = optional_word { println!("The word is: {}", word); } else { println!("The optional word doesn't contain anything"); } }
जबकि let
#![allow(unused)] fn main() { let mut optional = Some(0); // This reads: "while `let` destructures `optional` into // `Some(i)`, evaluate the block (`{}`). Else `break`. while let Some(i) = optional { if i > 9 { println!("Greater than 9, quit!"); optional = None; } else { println!("`i` is `{:?}`. Try again.", i); optional = Some(i + 1); } // ^ Less rightward drift and doesn't require // explicitly handling the failing case. } }
Traits
एक प्रकार के लिए एक नई विधि बनाएं
#![allow(unused)] fn main() { trait AppendBar { fn append_bar(self) -> Self; } impl AppendBar for String { fn append_bar(self) -> Self{ format!("{}Bar", self) } } let s = String::from("Foo"); let s = s.append_bar(); println!("s: {}", s); }
परीक्षण
#![allow(unused)] fn main() { #[cfg(test)] mod tests { #[test] fn you_can_assert() { assert!(true); assert_eq!(true, true); assert_ne!(true, false); } } }
थ्रेडिंग
आर्क
एक Arc Clone का उपयोग करके ऑब्जेक्ट पर अधिक संदर्भ बनाने के लिए उपयोग कर सकता है ताकि उन्हें थ्रेड्स को पास किया जा सके। जब किसी मान के लिए अंतिम संदर्भ पॉइंटर स्कोप से बाहर होता है, तो वेरिएबल हटा दिया जाता है।
#![allow(unused)] fn main() { use std::sync::Arc; let apple = Arc::new("the same apple"); for _ in 0..10 { let apple = Arc::clone(&apple); thread::spawn(move || { println!("{:?}", apple); }); } }
Threads
इस मामले में हम थ्रेड को एक वेरिएबल पास करेंगे जिसे वह संशोधित कर सकेगा।
fn main() { let status = Arc::new(Mutex::new(JobStatus { jobs_completed: 0 })); let status_shared = Arc::clone(&status); thread::spawn(move || { for _ in 0..10 { thread::sleep(Duration::from_millis(250)); let mut status = status_shared.lock().unwrap(); status.jobs_completed += 1; } }); while status.lock().unwrap().jobs_completed < 10 { println!("waiting... "); thread::sleep(Duration::from_millis(500)); } }