Rust Basics
Tip
Learn & practice AWS Hacking:
HackTricks Training AWS Red Team Expert (ARTE)
Learn & practice GCP Hacking:HackTricks Training GCP Red Team Expert (GRTE)
Learn & practice Az Hacking:HackTricks Training Azure Red Team Expert (AzRTE)
Support HackTricks
- Check the subscription plans!
- Join the š¬ Discord group or the telegram group or follow us on Twitter š¦ @hacktricks_live.
- Share hacking tricks by submitting PRs to the HackTricks and HackTricks Cloud github repos.
Generic Types
Create a struct where 1 of their values could be any type
#![allow(unused)]
fn main() {
struct Wrapper<T> {
value: T,
}
impl<T> Wrapper<T> {
pub fn new(value: T) -> Self {
Wrapper { value }
}
}
Wrapper::new(42).value
Wrapper::new("Foo").value, "Foo"
}
Option, Some & None
The Option type means that the value might by of type Some (there is something) or None:
#![allow(unused)]
fn main() {
pub enum Option<T> {
None,
Some(T),
}
}
You can use functions such as is_some() or is_none() to check the value of the Option.
Macros
Macros are more powerful than functions because they expand to produce more code than the code youāve written manually. For example, a function signature must declare the number and type of parameters the function has. Macros, on the other hand, can take a variable number of parameters: we can call println!("hello") with one argument or println!("hello {}", name) with two arguments. Also, macros are expanded before the compiler interprets the meaning of the code, so a macro can, for example, implement a trait on a given type. A function canāt, because it gets called at runtime and a trait needs to be implemented at compile time.
macro_rules! my_macro {
() => {
println!("Check out my macro!");
};
($val:expr) => {
println!("Look at this other macro: {}", $val);
}
}
fn main() {
my_macro!();
my_macro!(7777);
}
// Export a macro from a module
mod macros {
#[macro_export]
macro_rules! my_macro {
() => {
println!("Check out my macro!");
};
}
}
Iterate
#![allow(unused)]
fn main() {
// Iterate through a vector
let my_fav_fruits = vec!["banana", "raspberry"];
let mut my_iterable_fav_fruits = my_fav_fruits.iter();
assert_eq!(my_iterable_fav_fruits.next(), Some(&"banana"));
assert_eq!(my_iterable_fav_fruits.next(), Some(&"raspberry"));
assert_eq!(my_iterable_fav_fruits.next(), None); // When it's over, it's none
// One line iteration with action
my_fav_fruits.iter().map(|x| capitalize_first(x)).collect()
// Hashmap iteration
for (key, hashvalue) in &*map {
for key in map.keys() {
for value in map.values() {
}
Recursive Box
#![allow(unused)]
fn main() {
enum List {
Cons(i32, List),
Nil,
}
let list = Cons(1, Cons(2, Cons(3, Nil)));
}
Conditionals
if
#![allow(unused)]
fn main() {
let n = 5;
if n < 0 {
print!("{} is negative", n);
} else if n > 0 {
print!("{} is positive", n);
} else {
print!("{} is zero", n);
}
}
match
#![allow(unused)]
fn main() {
match number {
// Match a single value
1 => println!("One!"),
// Match several values
2 | 3 | 5 | 7 | 11 => println!("This is a prime"),
// TODO ^ Try adding 13 to the list of prime values
// Match an inclusive range
13..=19 => println!("A teen"),
// Handle the rest of cases
_ => println!("Ain't special"),
}
let boolean = true;
// Match is an expression too
let binary = match boolean {
// The arms of a match must cover all the possible values
false => 0,
true => 1,
// TODO ^ Try commenting out one of these arms
};
}
loop (infinite)
#![allow(unused)]
fn main() {
loop {
count += 1;
if count == 3 {
println!("three");
continue;
}
println!("{}", count);
if count == 5 {
println!("OK, that's enough");
break;
}
}
}
while
#![allow(unused)]
fn main() {
let mut n = 1;
while n < 101 {
if n % 15 == 0 {
println!("fizzbuzz");
} else if n % 5 == 0 {
println!("buzz");
} else {
println!("{}", n);
}
n += 1;
}
}
for
#![allow(unused)]
fn main() {
for n in 1..101 {
if n % 15 == 0 {
println!("fizzbuzz");
} else {
println!("{}", n);
}
}
// Use "..=" to make inclusive both ends
for n in 1..=100 {
if n % 15 == 0 {
println!("fizzbuzz");
} else if n % 3 == 0 {
println!("fizz");
} else if n % 5 == 0 {
println!("buzz");
} else {
println!("{}", n);
}
}
// ITERATIONS
let names = vec!["Bob", "Frank", "Ferris"];
//iter - Doesn't consume the collection
for name in names.iter() {
match name {
&"Ferris" => println!("There is a rustacean among us!"),
_ => println!("Hello {}", name),
}
}
//into_iter - COnsumes the collection
for name in names.into_iter() {
match name {
"Ferris" => println!("There is a rustacean among us!"),
_ => println!("Hello {}", name),
}
}
//iter_mut - This mutably borrows each element of the collection
for name in names.iter_mut() {
*name = match name {
&mut "Ferris" => "There is a rustacean among us!",
_ => "Hello",
}
}
}
if let
#![allow(unused)]
fn main() {
let optional_word = Some(String::from("rustlings"));
if let word = optional_word {
println!("The word is: {}", word);
} else {
println!("The optional word doesn't contain anything");
}
}
while let
#![allow(unused)]
fn main() {
let mut optional = Some(0);
// This reads: "while `let` destructures `optional` into
// `Some(i)`, evaluate the block (`{}`). Else `break`.
while let Some(i) = optional {
if i > 9 {
println!("Greater than 9, quit!");
optional = None;
} else {
println!("`i` is `{:?}`. Try again.", i);
optional = Some(i + 1);
}
// ^ Less rightward drift and doesn't require
// explicitly handling the failing case.
}
}
Traits
Create a new method for a type
#![allow(unused)]
fn main() {
trait AppendBar {
fn append_bar(self) -> Self;
}
impl AppendBar for String {
fn append_bar(self) -> Self{
format!("{}Bar", self)
}
}
let s = String::from("Foo");
let s = s.append_bar();
println!("s: {}", s);
}
Tests
#![allow(unused)]
fn main() {
#[cfg(test)]
mod tests {
#[test]
fn you_can_assert() {
assert!(true);
assert_eq!(true, true);
assert_ne!(true, false);
}
}
}
Threading
Arc
An Arc can use Clone to create more references over the object to pass them to the threads. When the last reference pointer to a value is out of scope, the variable is dropped.
#![allow(unused)]
fn main() {
use std::sync::Arc;
let apple = Arc::new("the same apple");
for _ in 0..10 {
let apple = Arc::clone(&apple);
thread::spawn(move || {
println!("{:?}", apple);
});
}
}
Threads
In this case we will pass the thread a variable it will be able to modify
fn main() {
let status = Arc::new(Mutex::new(JobStatus { jobs_completed: 0 }));
let status_shared = Arc::clone(&status);
thread::spawn(move || {
for _ in 0..10 {
thread::sleep(Duration::from_millis(250));
let mut status = status_shared.lock().unwrap();
status.jobs_completed += 1;
}
});
while status.lock().unwrap().jobs_completed < 10 {
println!("waiting... ");
thread::sleep(Duration::from_millis(500));
}
}
Security Essentials
Rust provides strong memory-safety guarantees by default, but you can still introduce critical vulnerabilities through unsafe code, dependency issues or logic mistakes. The following mini-cheatsheet gathers the primitives you will most commonly touch during offensive or defensive security reviews of Rust software.
Unsafe code & memory safety
unsafe blocks opt-out of the compilerās aliasing and bounds checks, so all traditional memory-corruption bugs (OOB, use-after-free, double free, etc.) can appear again. A quick audit checklist:
- Look for
unsafeblocks,extern "C"functions, calls toptr::copy*,std::mem::transmute,MaybeUninit, raw pointers orffimodules. - Validate every pointer arithmetic and length argument passed to low-level functions.
- Prefer
# or#[deny(unsafe_op_in_unsafe_fn)](1.68 +) to fail compilation when someone re-introducesunsafe.
Example overflow created with raw pointers:
#![allow(unused)]
fn main() {
use std::ptr;
fn vuln_copy(src: &[u8]) -> Vec<u8> {
let mut dst = Vec::with_capacity(4);
unsafe {
// ā copies *src.len()* bytes, the destination only reserves 4.
ptr::copy_nonoverlapping(src.as_ptr(), dst.as_mut_ptr(), src.len());
dst.set_len(src.len());
}
dst
}
}
Running Miri is an inexpensive way to detect UB at test time:
rustup component add miri
cargo miri test # hunts for OOB / UAF during unit tests
Auditing dependencies with RustSec / cargo-audit
Most real-world Rust vulns live in third-party crates. The RustSec advisory DB (community-powered) can be queried locally:
cargo install cargo-audit
cargo audit # flags vulnerable versions listed in Cargo.lock
Integrate it in CI and fail on --deny warnings.
cargo deny check advisories offers similar functionality plus licence and ban-list checks.
Supply-chain verification with cargo-vet (2024)
cargo vet records a review hash for every crate you import and prevents unnoticed upgrades:
cargo install cargo-vet
cargo vet init # generates vet.toml
cargo vet --locked # verifies packages referenced in Cargo.lock
The tool is being adopted by the Rust project infrastructure and a growing number of orgs to mitigate poisoned-package attacks.
Fuzzing your API surface (cargo-fuzz)
Fuzz tests easily catch panics, integer overflows and logic bugs that might become DoS or side-channel issues:
cargo install cargo-fuzz
cargo fuzz init # creates fuzz_targets/
cargo fuzz run fuzz_target_1 # builds with libFuzzer & runs continuously
Add the fuzz target to your repo and run it in your pipeline.
References
- RustSec Advisory Database ā https://rustsec.org
- Cargo-vet: āAuditing your Rust Dependenciesā ā https://mozilla.github.io/cargo-vet/
Tip
Learn & practice AWS Hacking:
HackTricks Training AWS Red Team Expert (ARTE)
Learn & practice GCP Hacking:HackTricks Training GCP Red Team Expert (GRTE)
Learn & practice Az Hacking:HackTricks Training Azure Red Team Expert (AzRTE)
Support HackTricks
- Check the subscription plans!
- Join the š¬ Discord group or the telegram group or follow us on Twitter š¦ @hacktricks_live.
- Share hacking tricks by submitting PRs to the HackTricks and HackTricks Cloud github repos.
HackTricks

