macOS MACF
Reading time: 16 minutes
tip
Learn & practice AWS Hacking:
HackTricks Training AWS Red Team Expert (ARTE)
Learn & practice GCP Hacking:
HackTricks Training GCP Red Team Expert (GRTE)
Learn & practice Az Hacking:
HackTricks Training Azure Red Team Expert (AzRTE)
Support HackTricks
- Check the subscription plans!
- Join the 💬 Discord group or the telegram group or follow us on Twitter 🐦 @hacktricks_live.
- Share hacking tricks by submitting PRs to the HackTricks and HackTricks Cloud github repos.
Basic Information
MACF stands for Mandatory Access Control Framework, which is a security system built into the operating system to help protect your computer. It works by setting strict rules about who or what can access certain parts of the system, such as files, applications, and system resources. By enforcing these rules automatically, MACF ensures that only authorized users and processes can perform specific actions, reducing the risk of unauthorized access or malicious activities.
Note that MACF doesn't really make any decisions as it just intercepts actions, it leaves the decisions to the policy modules (kernel extensions) it calls like AppleMobileFileIntegrity.kext, Quarantine.kext, Sandbox.kext, TMSafetyNet.kext and mcxalr.kext.
- A policy may be enforcing (return 0 non-zero on some operation)
- A policy may be monitoring (return 0, so as not to object but piggyback on hook to do something)
- A MACF static policy is installed in boot and will NEVER be removed
- A MACF dynamic policy is installed by a KEXT (kextload) and may hypothetically be kextunloaded
- In iOS only static policies are allowed and in macOS static + dynamic.
- https://newosxbook.com/xxr/index.php
Flow
- Process performs a syscall/mach trap
- The relevant function is called inside the kernel
- Function calls MACF
- MACF checks policy modules that requested to hook that function in their policy
- MACF calls the relevant policies
- Policies indicates if they allow or deny the action
caution
Apple is the only one that can use the MAC Framework KPI.
Usually the functions checking permissions with MACF will call the macro MAC_CHECK. Like in the case of syscall to create a socket which will call the function which mac_socket_check_create which calls MAC_CHECK(socket_check_create, cred, domain, type, protocol);. Moreover, the macro MAC_CHECK is defined in security/mac_internal.h as:
Resolver tambien MAC_POLICY_ITERATE, MAC_CHECK_CALL, MAC_CHECK_RSLT
#define MAC_CHECK(check, args...) do { \
error = 0; \
MAC_POLICY_ITERATE({ \
if (mpc->mpc_ops->mpo_ ## check != NULL) { \
MAC_CHECK_CALL(check, mpc); \
int __step_err = mpc->mpc_ops->mpo_ ## check (args); \
MAC_CHECK_RSLT(check, mpc); \
error = mac_error_select(__step_err, error); \
} \
}); \
} while (0)
Note that transforming check into socket_check_create and args... in (cred, domain, type, protocol) you get:
// Note the "##" just get the param name and append it to the prefix
#define MAC_CHECK(socket_check_create, args...) do { \
error = 0; \
MAC_POLICY_ITERATE({ \
if (mpc->mpc_ops->mpo_socket_check_create != NULL) { \
MAC_CHECK_CALL(socket_check_create, mpc); \
int __step_err = mpc->mpc_ops->mpo_socket_check_create (args); \
MAC_CHECK_RSLT(socket_check_create, mpc); \
error = mac_error_select(__step_err, error); \
} \
}); \
} while (0)
Expanding the helper macros shows the concrete control flow:
do { // MAC_CHECK
error = 0;
do { // MAC_POLICY_ITERATE
struct mac_policy_conf *mpc;
u_int i;
for (i = 0; i < mac_policy_list.staticmax; i++) {
mpc = mac_policy_list.entries[i].mpc;
if (mpc == NULL) {
continue;
}
if (mpc->mpc_ops->mpo_socket_check_create != NULL) {
DTRACE_MACF3(mac__call__socket_check_create,
void *, mpc, int, error, int, MAC_ITERATE_CHECK); // MAC_CHECK_CALL
int __step_err = mpc->mpc_ops->mpo_socket_check_create(args);
DTRACE_MACF2(mac__rslt__socket_check_create,
void *, mpc, int, __step_err); // MAC_CHECK_RSLT
error = mac_error_select(__step_err, error);
}
}
if (mac_policy_list_conditional_busy() != 0) {
for (; i <= mac_policy_list.maxindex; i++) {
mpc = mac_policy_list.entries[i].mpc;
if (mpc == NULL) {
continue;
}
if (mpc->mpc_ops->mpo_socket_check_create != NULL) {
DTRACE_MACF3(mac__call__socket_check_create,
void *, mpc, int, error, int, MAC_ITERATE_CHECK);
int __step_err = mpc->mpc_ops->mpo_socket_check_create(args);
DTRACE_MACF2(mac__rslt__socket_check_create,
void *, mpc, int, __step_err);
error = mac_error_select(__step_err, error);
}
}
mac_policy_list_unbusy();
}
} while (0);
} while (0);
In other words, MAC_CHECK(socket_check_create, ...) walks the static policies first, conditionally locks and iterates over dynamic policies, emits the DTrace probes around each hook, and collapses every hook’s return code into the single error result via mac_error_select().
Labels
MACF use labels that then the policies checking if they should grant some access or not will use. The code of the labels struct declaration can be found here, which is then used inside the struct ucred in here in the cr_label part. The label contains flags and s number of slots that can be used by MACF policies to allocate pointers. For example Sanbox will point to the container profile
MACF Policies
A MACF Policy defined rule and conditions to be applied in certain kernel operations.
A kernel extension could configure a mac_policy_conf struct and then register it calling mac_policy_register. From here:
#define mpc_t struct mac_policy_conf *
/**
@brief Mac policy configuration
This structure specifies the configuration information for a
MAC policy module. A policy module developer must supply
a short unique policy name, a more descriptive full name, a list of label
namespaces and count, a pointer to the registered enty point operations,
any load time flags, and optionally, a pointer to a label slot identifier.
The Framework will update the runtime flags (mpc_runtime_flags) to
indicate that the module has been registered.
If the label slot identifier (mpc_field_off) is NULL, the Framework
will not provide label storage for the policy. Otherwise, the
Framework will store the label location (slot) in this field.
The mpc_list field is used by the Framework and should not be
modified by policies.
*/
/* XXX - reorder these for better aligment on 64bit platforms */
struct mac_policy_conf {
const char *mpc_name; /** policy name */
const char *mpc_fullname; /** full name */
const char **mpc_labelnames; /** managed label namespaces */
unsigned int mpc_labelname_count; /** number of managed label namespaces */
struct mac_policy_ops *mpc_ops; /** operation vector */
int mpc_loadtime_flags; /** load time flags */
int *mpc_field_off; /** label slot */
int mpc_runtime_flags; /** run time flags */
mpc_t mpc_list; /** List reference */
void *mpc_data; /** module data */
};
It's easy to identify the kernel extensions configuring these policies by checking calls to mac_policy_register. Moreover, checking the disassemble of the extension it's also possible to find the used mac_policy_conf struct.
Note that MACF policies can be registered and unregistered also dynamically.
One of the main fields of the mac_policy_conf is the mpc_ops. This fied specifies which opreations the policy is interested in. Note that there are hundres of them, so it's possible to zero all of them and then select just the ones the policy is interested on. From here:
struct mac_policy_ops {
mpo_audit_check_postselect_t *mpo_audit_check_postselect;
mpo_audit_check_preselect_t *mpo_audit_check_preselect;
mpo_bpfdesc_label_associate_t *mpo_bpfdesc_label_associate;
mpo_bpfdesc_label_destroy_t *mpo_bpfdesc_label_destroy;
mpo_bpfdesc_label_init_t *mpo_bpfdesc_label_init;
mpo_bpfdesc_check_receive_t *mpo_bpfdesc_check_receive;
mpo_cred_check_label_update_execve_t *mpo_cred_check_label_update_execve;
mpo_cred_check_label_update_t *mpo_cred_check_label_update;
[...]
Almost all the hooks will be called back by MACF when one of those operations are intercepted. However, mpo_policy_* hooks are an exception because mpo_hook_policy_init() is a callback called upon registration (so after mac_policy_register()) and mpo_hook_policy_initbsd() is called during late registration once the BSD subsystem has initialised properly.
Moreover, the mpo_policy_syscall hook can be registered by any kext to expose a private ioctl style call interface. Then, a user client will be able to call mac_syscall (#381) specifying as parameters the policy name with an integer code and optional arguments.
For example, the Sandbox.kext uses this a lot.
Checking the kext's __DATA.__const* is possible to identify the mac_policy_ops structure used when registering the policy. It's possible to find it because its pointer is at an offset inside mpo_policy_conf and also because the amount of NULL pointers that will be in that area.
Moreover, it's also possible to get the list of kexts that have configured a policy by dumping from memory the struct _mac_policy_list which is updated with every policy that is registered.
You could also use the tool xnoop to dump all the policies registered in the system:
xnoop offline .
Xn👀p> macp
mac_policy_list(@0xfffffff0447159b8): 3 Mac Policies@0xfffffff0447153f0
0: 0xfffffff044886f18:
mpc_name: AppleImage4
mpc_fullName: AppleImage4 hooks
mpc_ops: mac_policy_ops@0xfffffff044886f68
1: 0xfffffff0448d7d40:
mpc_name: AMFI
mpc_fullName: Apple Mobile File Integrity
mpc_ops: mac_policy_ops@0xfffffff0448d72c8
2: 0xfffffff044b0b950:
mpc_name: Sandbox
mpc_fullName: Seatbelt sandbox policy
mpc_ops: mac_policy_ops@0xfffffff044b0b9b0
Xn👀p> dump mac_policy_opns@0xfffffff0448d72c8
Type 'struct mac_policy_opns' is unrecognized - dumping as raw 64 bytes
Dumping 64 bytes from 0xfffffff0448d72c8
And then dump all the checks of check policy with:
Xn👀p> dump mac_policy_ops@0xfffffff044b0b9b0
Dumping 2696 bytes from 0xfffffff044b0b9b0 (as struct mac_policy_ops)
mpo_cred_check_label_update_execve(@0x30): 0xfffffff046d7fb54(PACed)
mpo_cred_check_label_update(@0x38): 0xfffffff046d7348c(PACed)
mpo_cred_label_associate(@0x58): 0xfffffff046d733f0(PACed)
mpo_cred_label_destroy(@0x68): 0xfffffff046d733e4(PACed)
mpo_cred_label_update_execve(@0x90): 0xfffffff046d7fb60(PACed)
mpo_cred_label_update(@0x98): 0xfffffff046d73370(PACed)
mpo_file_check_fcntl(@0xe8): 0xfffffff046d73164(PACed)
mpo_file_check_lock(@0x110): 0xfffffff046d7309c(PACed)
mpo_file_check_mmap(@0x120): 0xfffffff046d72fc4(PACed)
mpo_file_check_set(@0x130): 0xfffffff046d72f2c(PACed)
mpo_reserved08(@0x168): 0xfffffff046d72e3c(PACed)
mpo_reserved09(@0x170): 0xfffffff046d72e34(PACed)
mpo_necp_check_open(@0x1f0): 0xfffffff046d72d9c(PACed)
mpo_necp_check_client_action(@0x1f8): 0xfffffff046d72cf8(PACed)
mpo_vnode_notify_setextattr(@0x218): 0xfffffff046d72ca4(PACed)
mpo_vnode_notify_setflags(@0x220): 0xfffffff046d72c84(PACed)
mpo_proc_check_get_task_special_port(@0x250): 0xfffffff046d72b98(PACed)
mpo_proc_check_set_task_special_port(@0x258): 0xfffffff046d72ab4(PACed)
mpo_vnode_notify_unlink(@0x268): 0xfffffff046d72958(PACed)
mpo_vnode_check_copyfile(@0x290): 0xfffffff046d726c0(PACed)
mpo_mount_check_quotactl(@0x298): 0xfffffff046d725c4(PACed)
...
MACF initialization in XNU
Early bootstrap and mac_policy_init()
- MACF is initialised very soon. In
bootstrap_thread(in XNU startup code), afteripc_bootstrap, XNU callsmac_policy_init()(inmac_base.c). mac_policy_init()initializes the globalmac_policy_list(an array or list of policy slots) and sets up the infrastructure for MAC (Mandatory Access Control) within XNU.- Later,
mac_policy_initmach()is invoked, which handles the kernel side of policy registration for built-in or bundled policies.
mac_policy_initmach() and loading “security extensions”
-
mac_policy_initmach()examines kernel extensions (kexts) that are preloaded (or in a “policy injection” list) and inspects their Info.plist for the keyAppleSecurityExtension. -
Kexts that declare
<key>AppleSecurityExtension</key>(ortrue) in their Info.plist are considered “security extensions” — i.e. ones that implement a MAC policy or hook into the MACF infrastructure. -
Examples of Apple kexts with that key include ALF.kext, AppleMobileFileIntegrity.kext (AMFI), Sandbox.kext, Quarantine.kext, TMSafetyNet.kext, CoreTrust.kext, AppleSystemPolicy.kext, among others (as you already listed).
-
The kernel ensures those kexts are loaded early, then calls their registration routines (via
mac_policy_register) during boot, inserting them into themac_policy_list.- Each policy module (kext) provides a
mac_policy_confstructure, with hooks (mpc_ops) for various MAC operations (vnode checks, exec checks, label updates, etc.). - The load time flags may include
MPC_LOADTIME_FLAG_NOTLATEmeaning “must be loaded early” (so late registration attempts are rejected). - Once registered, each module gets a handle and occupies a slot in
mac_policy_list. - When a MAC hook is invoked later (for example, vnode access, exec, etc.), MACF iterates all registered policies to make collective decisions.
- Each policy module (kext) provides a
-
In particular, AMFI (Apple Mobile File Integrity) is such a security extension. Its Info.plist includes
AppleSecurityExtensionmarking it as a security policy. -
As part of kernel boot, the kernel load logic ensures that the “security policy” (AMFI, etc.) is already active before many subsystems depend on it. For example, the kernel “prepares for tasks ahead by loading … security policy, including AppleMobileFileIntegrity (AMFI), Sandbox, Quarantine policy.”
cd /System/Library/Extensions
find . -name Info.plist | xargs grep AppleSecurityExtension 2>/dev/null
./AppleImage4.kext/Contents/Info.plist: <key>AppleSecurityExtension</key>
./ALF.kext/Contents/Info.plist: <key>AppleSecurityExtension</key>
./CoreTrust.kext/Contents/Info.plist: <key>AppleSecurityExtension</key>
./AppleMobileFileIntegrity.kext/Contents/Info.plist: <key>AppleSecurityExtension</key>
./Quarantine.kext/Contents/Info.plist: <key>AppleSecurityExtension</key>
./Sandbox.kext/Contents/Info.plist: <key>AppleSecurityExtension</key>
./AppleSystemPolicy.kext/Contents/Info.plist: <key>AppleSecurityExtension</key>
KPI dependency & com.apple.kpi.dsep in MAC policy kexts
When writing a kext that uses the MAC framework (i.e. calling mac_policy_register() etc.), you must declare dependencies on KPIs (Kernel Programming Interfaces) so the kext linker (kxld) can resolve those symbols. SO in order to declare a kext depends on MACF you need to indicate it in the Info.plist with com.apple.kpi.dsep (find . Info.plist | grep AppleSecurityExtension), then the kext will refer to symbols like mac_policy_register, mac_policy_unregister, and MAC hook function pointers. To resolve those, you must list com.apple.kpi.dsep as a dependency.
Example Info.plist snippet (inside your .kext):
<key>OSBundleLibraries</key>
<dict>
<key>com.apple.kpi.dsep</key>
<string>18.0</string>
<key>com.apple.kpi.libkern</key>
<string>18.0</string>
<key>com.apple.kpi.bsd</key>
<string>18.0</string>
<key>com.apple.kpi.mach</key>
<string>18.0</string>
… (other kpi dependencies as needed)
</dict>
MACF Callouts
It's common to find callouts to MACF defined in code like: #if CONFIG_MAC conditional blocks. Moreover, inside these blocks it's possible to find calls to mac_proc_check* which calls MACF to check for permissions to perform certain actions. Moreover, the format of the MACF callouts is: mac_<object>_<opType>_opName.
The object is one of the following: bpfdesc, cred, file, proc, vnode, mount, devfs, ifnet, inpcb, mbuf, ipq, pipe, sysv[msg/msq/shm/sem], posix[shm/sem], socket, kext.
The opType is usually check which will be used to allow or deny the action. However, it's also possible to find notify, which will allow the kext to react to the given action.
You can find an example in https://github.com/apple-oss-distributions/xnu/blob/94d3b452840153a99b38a3a9659680b2a006908e/bsd/kern/kern_mman.c#L621:
int
mmap(proc_t p, struct mmap_args *uap, user_addr_t *retval)
{
[...]
#if CONFIG_MACF
error = mac_file_check_mmap(vfs_context_ucred(ctx),
fp->fp_glob, prot, flags, file_pos + pageoff,
&maxprot);
if (error) {
(void)vnode_put(vp);
goto bad;
}
#endif /* MAC */
[...]
Then, it's possible to find the code of mac_file_check_mmap in https://github.com/apple-oss-distributions/xnu/blob/94d3b452840153a99b38a3a9659680b2a006908e/security/mac_file.c#L174
mac_file_check_mmap(struct ucred *cred, struct fileglob *fg, int prot,
int flags, uint64_t offset, int *maxprot)
{
int error;
int maxp;
maxp = *maxprot;
MAC_CHECK(file_check_mmap, cred, fg, NULL, prot, flags, offset, &maxp);
if ((maxp | *maxprot) != *maxprot) {
panic("file_check_mmap increased max protections");
}
*maxprot = maxp;
return error;
}
Which is calling the MAC_CHECK macro, whose code can be found in https://github.com/apple-oss-distributions/xnu/blob/94d3b452840153a99b38a3a9659680b2a006908e/security/mac_internal.h#L261
/*
* MAC_CHECK performs the designated check by walking the policy
* module list and checking with each as to how it feels about the
* request. Note that it returns its value via 'error' in the scope
* of the caller.
*/
#define MAC_CHECK(check, args...) do { \
error = 0; \
MAC_POLICY_ITERATE({ \
if (mpc->mpc_ops->mpo_ ## check != NULL) { \
DTRACE_MACF3(mac__call__ ## check, void *, mpc, int, error, int, MAC_ITERATE_CHECK); \
int __step_err = mpc->mpc_ops->mpo_ ## check (args); \
DTRACE_MACF2(mac__rslt__ ## check, void *, mpc, int, __step_err); \
error = mac_error_select(__step_err, error); \
} \
}); \
} while (0)
Which will go over all the registered mac policies calling their functions and storing the output inside the error variable, which will only be overridable by mac_error_select by success codes so if any check fails the complete check will fail and the action won't be allowed.
tip
However, remember that not all MACF callouts are used only to deny actions. For example, mac_priv_grant calls the macro MAC_GRANT, which will grant the requested privilege if any policy answers with a 0:
/*
* MAC_GRANT performs the designated check by walking the policy
* module list and checking with each as to how it feels about the
* request. Unlike MAC_CHECK, it grants if any policies return '0',
* and otherwise returns EPERM. Note that it returns its value via
* 'error' in the scope of the caller.
*/
#define MAC_GRANT(check, args...) do { \
error = EPERM; \
MAC_POLICY_ITERATE({ \
if (mpc->mpc_ops->mpo_ ## check != NULL) { \
DTRACE_MACF3(mac__call__ ## check, void *, mpc, int, error, int, MAC_ITERATE_GRANT); \
int __step_res = mpc->mpc_ops->mpo_ ## check (args); \
if (__step_res == 0) { \
error = 0; \
} \
DTRACE_MACF2(mac__rslt__ ## check, void *, mpc, int, __step_res); \
} \
}); \
} while (0)
priv_check & priv_grant
These callas are meant to check and provide (tens of) privileges defined in bsd/sys/priv.h.
Some kernel code would call priv_check_cred() from bsd/kern/kern_priv.c with the KAuth credentials of the process and one of the privileges code which will call mac_priv_check to see if any policy denies giving the privilege and then it calls mac_priv_grant to see if any policy grants the privilege.
proc_check_syscall_unix
This hook allows to intercept all system calls. In bsd/dev/[i386|arm]/systemcalls.c it's possible to see the declared function unix_syscall, which contains this code:
#if CONFIG_MACF
if (__improbable(proc_syscall_filter_mask(proc) != NULL && !bitstr_test(proc_syscall_filter_mask(proc), syscode))) {
error = mac_proc_check_syscall_unix(proc, syscode);
if (error) {
goto skip_syscall;
}
}
#endif /* CONFIG_MACF */
Which will check in the calling process bitmask if the current syscall should call mac_proc_check_syscall_unix. This is because syscalls are called so frequently that it's interesting to avoid calling mac_proc_check_syscall_unix every time.
Note that the function proc_set_syscall_filter_mask(), which set the bitmask syscalls in a process is called by Sandbox to set masks on sandboxed processes.
Exposed MACF syscalls
It's possible to interact with MACF through some syscalls defined in security/mac.h:
/*
* Extended non-POSIX.1e interfaces that offer additional services
* available from the userland and kernel MAC frameworks.
*/
#ifdef __APPLE_API_PRIVATE
__BEGIN_DECLS
int __mac_execve(char *fname, char **argv, char **envv, mac_t _label);
int __mac_get_fd(int _fd, mac_t _label);
int __mac_get_file(const char *_path, mac_t _label);
int __mac_get_link(const char *_path, mac_t _label);
int __mac_get_pid(pid_t _pid, mac_t _label);
int __mac_get_proc(mac_t _label);
int __mac_set_fd(int _fildes, const mac_t _label);
int __mac_set_file(const char *_path, mac_t _label);
int __mac_set_link(const char *_path, mac_t _label);
int __mac_mount(const char *type, const char *path, int flags, void *data,
struct mac *label);
int __mac_get_mount(const char *path, struct mac *label);
int __mac_set_proc(const mac_t _label);
int __mac_syscall(const char *_policyname, int _call, void *_arg);
__END_DECLS
#endif /*__APPLE_API_PRIVATE*/
References
tip
Learn & practice AWS Hacking:
HackTricks Training AWS Red Team Expert (ARTE)
Learn & practice GCP Hacking:
HackTricks Training GCP Red Team Expert (GRTE)
Learn & practice Az Hacking:
HackTricks Training Azure Red Team Expert (AzRTE)
Support HackTricks
- Check the subscription plans!
- Join the 💬 Discord group or the telegram group or follow us on Twitter 🐦 @hacktricks_live.
- Share hacking tricks by submitting PRs to the HackTricks and HackTricks Cloud github repos.
HackTricks